

JAI HIND COLLEGE BASANTSING INSTITUTE OF SCIENCE &

J.T.LALVANI COLLEGE OF COMMERCE (AUTONOMOUS) "A" Road, Churchgate, Mumbai -400 020,India.

Affiliated to University of Mumbai

Program: B.Sc. Mathematics

Course: Calculus II

Semester II

Credit Based Semester and Grading System (CBSGS) with effect from the academic year 2021-22

Semester II Course Code SMAT 201 **Course Title** Credits Lectures/ Week CALCULUS II 02 03 l CAN W l

F.Y. B.Sc. Mathematics Syllabus

Semester II – Theory

SMAT 201	Calculus–II (Credits:02 Lectures/Week:03)			
	Course Objectives:			
	1. The primary aim of this course is to expose students to the beauty of the			
	definition of limit of a function, continuity and the concept of differentiation.			
	2. The first unit is based on limits and continuity in which students learn the			
	definition of continuity and sequential continuity and the equivalence between			
	them. Problems based on these concepts are solved rigorously.			
	3. The next unit is based on differentiability. Here students understand the notion			
	of differentiation of a real valued function and mean value theorems. The last			
	section emphasis on applications of differentiability.			
	Course Outcomes:			
	1. Students get to learn the rigorous definition of limit of a function, continuity			
	which is a cornerstone in mathematics.2. Students hone their analytical skills and thinking ability while learning			
_				
	 Sandwich theorem, Intermediate value theorem which are of utmost importan in mathematics and in any science for that matter. They learn real life applications of limits and continuity and understand deepl why we need the notion of continuity, differentiability in the first place, what 			
	we mean by saying a function is continuous, differentiable etc.			
	Limits and Continuity:	15L		
	1. $\epsilon - \delta$ definition of limit of a (real valued) function, Right hand and Left			
	hand limits, Uniqueness of limit when it exists, Algebra of limit of a			
	function, Sandwich theorem.			
1.1	2. $\epsilon - \delta$ definition of continuity of a (real valued) function, examples,			
- N	Sequential continuity.			
- N	3. Algebra of continuous functions, Continuity of $ f $ when f is continuous.			
Unit I	Continuity of composition of two continuous functions.			
	4. Examples of discontinuous functions and continuity of constant			
	function, identity function, trigonometric functions, polynomial			
	functions etc.			
	5. Intermediate value theorem and its applications, A continuous			
	function on a closed and bounded interval is bounded and attains its			
	bounds and its consequences.			
	1311 - 7 - 1151			
	Differentiation:	15L		
	1. Differentiation of a real-valued function, examples of differentiable and			
	non-differentiable functions, differentiability implies continuity,			
Unit II	Algebra of differentiable functions, Derivative of a inverse function.			
	2. Chain-Rule, Higher ordered ivatives, Leibnitz rule, L'Hospital's			
	rule, examples of in-determinate form.			
	3. Rolle's theorem, Lagrange's and Cauchy's mean value theorem,			
	their applications and examples.	1.77		
	Applications of Differentiation:	15L		
Unit III	 Participation of local maximum and local minimum recorder condition 			
	2. Definition of local maximum and local minimum, necessary condition,			
	stationary points, first and second derivative test, examples, Graphing			
	 Application to accompanies and company Concerns Concerns functions 			
	5. Application to economics and commerce, Concave, convex functions,			

References:

- 1. R.G. Bartle and D.R. Sherbert, Introduction to real analysis, third edition, John Wiley and Sons, 2010
- Ajit Kumar and S. Kumaresan, Abasic course in real analysis, C R C press 2014. James Stewart, Calculus: early transcend dentals, Cengage, 7th edition, 2017. 2.
- 3.

Additional References:

- 1. Strauss, Bradley and Smith, Calculus, Pearson 3rd edition, 2002.
- 2. R.R. Goldberg, Method of real analysis, Oxford and IBH, 1984.
- 3. T.M. Apostol, Calculus Volume I, second edition, Wiley and Sons (Asia), 1967.
- 4. K.G. Binmore, Mathematical Analysis, Cambridge university press, 1984.

Semester II **Course Title** Credits Course Lectures /Week Code ALGEBRA II SMAT 202 02 03 V CAN l

F.Y. B.Sc. Mathematics Syllabus

SMAT	Algebra II				
202	(Credits: 02 Lectures/Week:03)				
	Course Objectives:				
	1. The aim of this course is to introduce system of linear equations and matrices				
	which will help them to understand vector spaces.				
	2. To introduce the definition of permutation of a set, its cycle notation, order and				
	signature of permutation. To study symmetries of equilateral triangles, squares				
	and rectangle.				
	3. To understand the definition of polynomials over a given field, divisional				
	algorithm for polynomials over \mathbb{R} , roots of a polynomial and its multiplicity,				
	roots of unity. To study remainder theorem, factor theoremand rational root				
	theorem.				
	 Course Outcomes: Students will be able to solve System of line as equations and interpret it geometrically. Students will be able to define permutation and get acquainted with its properties, transpositions, order and signature of a permutation. 				
(The second s					
	3. Students will be able to find gcd of two polynomials over \mathbb{R} . Use Euclidean				
	algorithm and solve problems based on that. Students will be equipped with	h			
	different methods of finding roots of a polynomial.				
	System of Line are Equations and Matrices:	15L			
	1. System of homogeneous and non-homogeneous linear equations, the				
	solution of system of m homogeneous linear equations in n unknowns by				
	elimination and its geometrical interpretation.				
	2. Definition of an <i>n</i> -tuple of real numbers, sum of two <i>n</i> -tuples and				
1	scalar multiplication of an <i>n</i> -tuple.				
	3. Matrices with real entries; addition, scalar multiplication and				
Unit I	multiplication of matrices; transpose of a matrix, types of matrices:				
	zero matrix, identity matrix, diagonal matrices, triangular matrices,				
	symmetric matrices, skew-symmetric matrices, invertible matrices,				
	identities such as $(AB)^{t} = B^{t}A^{t}, (AB)^{-1} = B^{-1}A^{-1}$				
	4. System of line are equations in matrix form, elementary row operations,				
	row echelon form, Gauss elimination method, the system of m				
	homogeneous linear equations in n unknown s has a non-trivial solution				
	11 <i>m</i> < <i>n</i> .	1 ==			
	Permutations:	15L			
	1. Definition of a permutation of a set, Set of all permutations of the set $(1,2)$				
	$\{1, 2,, n\}$ <i>i.e.</i> S _n and its cardinality, Symmetries of an equilateral				
	triangle, square, rectangle.				
Unit II	2. Cycles, Composition of permutations, properties of permutations such as				
	every permutation of a finite set can be written as a cycle or a product of				
	disjoint cycles, disjoint cycles commute.				
	3. Transpositions, any permutation can be expressed as a product of				
	transpositions, order of a permutation, sign of a permutation.				
	Polynomials:	15L			
	1. Definition of a polynomial, polynomials over the field F where $F =$	1011			
	\mathbb{O} , \mathbb{R} or \mathbb{C} . Algebra of polynomials, degree of a polynomial basic				
Unit III	properties.				
	2. Divisional algorithm for polynomials over \mathbb{R} gcd of two polynomials				
	and its basic proper-ties. Euclidean algorithm and its applications				
	roots of a polynomial relation between roots and co-efficient				
	multiplicity of a root, remainder theorem, factor theorem.				

3.	A polynomial of degree <i>n</i> has at most <i>n</i> roots, Complex roots of a	
	polynomial in $\mathbb{R}[X]$ occur in conjugate pairs, statement of	
	Fundamental theorem of algebra, a polynomial of degree <i>n</i> .	
4.	Rational root theorem and its consequences such as \sqrt{p} is an irrational	ł

number when p is a prime number, roots of unity, sum of all the roots of unity

References:

- **1.** S. Kumaresan, Linear algebra, a geometric approach first edition, Prenticeh all of India, 2009.
- 2. Joseph A.Gallian, Contemporary abstract algebra, fourth edition, Narosa publications, 1999
- 3. John Fraleigh, A first course in abstract algebra, seventh edition, Pearson, 2013.

Additional References:

- 1. Norman L. Biggs, Discrete mathematics, second edition, Oxford university press, 2003
- 2. I.N. Herstein, Topics in algebra, second edition, Wiley India edition, 2008
- 3. Serge Lang, Introduction to linear algebra, second edition, Springer, 1986

Semester II					
Course Code	Course Title	Credits	Lectures /Week		
SMAT2 PR2	PRACTICAL-II (Based on SMAT 201 /SMAT 202)	02	02		

F.Y. B.Sc. Mathematics Syllabus

Semester II – Practical

Course Code: SMAT2 PR2 PRACTICAL-II (Based on SMAT 201, SMAT 202)

Course Objectives:

- > To introduce linear equations and matrices to understand vector spaces.
- To learn the definition of continuity and sequential continuity and the equivalence between them.

Course Outcomes:

- > To solve System of line as equations and interpret it geometrically.
- > To solve problems based on limits and continuity

Practical for Calculus II

- 1) Problems on limits and continuity using definition
- 2) Problems on sandwich theorem and intermediate value theorem.
- 3) Problems on differentiability and Leibnitz rule, L'Hospital's rule
- 4) Problems based on mean value theorems.
- 5) Problems on local maxima and minima.
- 6) Concavity of curves with graphs.

Practical for Algebra II

- 1) Problems of solving homogeneous system of *m* equations and *n* unknowns by elimination, problems on row echelon form
- 2) Solving as y stem Ax = b by Gausse limination, finding inverse of a matrix if it exists, solutions of system of linear equations.
- 3) Permutations of a finite set, Symmetries, cycles, compositions of permutations.
- 4) Permutation as a product of 2-cycles, order and sign of a permutation.
- 5) Problems on division algorithm and gcd of two polynomials.
- 6) Problems based on factor theorem, remainder theorem and rational root theorem.

Evaluation Scheme

I. Continuous Assessment (C.A.) - 40 Marks

C.A.-I: Test (MCQ) – 20 Marks of 30 minutes duration C.A.-II: Assingnment/Project- 20 Marks

II. Semester End Examination (SEE) - 60 Marks