

JAI HIND COLLEGE BASANTSING INSTITUTE OF SCIENCE &

J.T.LALVANICOLLEGE OF COMMERCE (AUTONOMOUS) "A" Road, Churchgate, Mumbai - 400 020, India.

Affiliated to University of Mumbai

Program: B.Sc. Physics

Course: Mechanics and Thermodynamics- I

Semester I

Credit Based Semester and Grading System (CBSGS) with effect from the academic year 2021-22

	Semester I		
Course Code	Course Title	Credits	Lectures /Week
SPHY101	Mechanics and Thermodynamics- I	2	3
	Jai	N	

F.Y. B.Sc Physics Syllabus

Course: SPHV101	Mechanics and Thermodynamics- I Credits					
	Objectives	e/ Week.J				
	• To understand the fundamentals of Mechanics and Thermodynamics					
	 To understand the fundamentals of Mechanics and Thermodynamics Outcomes: To state the applications of Newton's laws to classical systems 					
	• To state the applications of Newton's laws to classical systems	.				
	• To explain the concepts of elasticity and viscosity					
	• To apply the laws of thermodynamics to formulate the	relations				
	necessary to analyze a thermo dynamic process.					
	Mechanics:					
	1. Newton's laws of motion					
	1.1. Newton's first and second law and their explanation					
	1.2. Working with Newton's first and second law					
	1.3. Newton's third law and its explanation.					
	a construction of the second					
	2. Applying Newton's laws					
	2.1. Using Newton's first law: Particles in equilibrium,					
Unit I	2.2. Using Newton's second law: Dynamics of particles,					
	Frictional forces, Dynamics of circular motion, typical					
	examples such as a block on table/ incline, Pulley, Lift etc.					
1						
	3. Rotation of rigid bodies					
- N	3.1. Angular velocity and acceleration,					
	3.2. Rotation with constant angular acceleration					
	3.5. Relating linear and angular kinematics					
	3.4. Energy in rotational motion, moment of mertia calculations,					
	Machanica	151				
	Mechanics;	15L				
	1. Elasticity 1.1. Pavious of Electic constants V, K, n and σ :					
	1.2. Equivalence of chear strain to compression and extension					
	strains Relations between elastic constants. Couple for twist					
	in cylinder					
Unit II	Fluid Dynamics					
	2.1 Equation of continuity					
	2.1. Equation of community 2.2 Bernoulli's equation applications of Bernoulli's equation					
	2.2. Bernoulli 5 equation, applications of Dernoulli 5 equation 2.3. Streamline and turbulent flow lines of flow in airfoil					
	2.9. Buccannine and tarbulent now, mes of now in an on 2.4. Poiseuille's equation. Stoke's law. Toricelli's theorem					
	2.5. Millikan's oil dron experiment applications to biological					
	sciences					
	Thermodynamics:	15L				
	1. Andrew's experiment. Behaviour of real gases and real gas	1012				
	equation. Boyle's law, Van der Waal equation.					
Unit III	2. Thermodynamic Systems. Zeroeth law of thermodynamics.					
	Concept of Heat, the First Law. Non Adiabatic process and					
	Heat as a path function. Internal energy. Heat Capacity and					
	specific heat. Applications of first law to simple processes.					

Semester I – Theory

	general relations from the first law, Indicator diagrams, Work done during isothermal and adiabatic processes, Worked examples, Problems. Temperature variation with height.	
ICA (Internal Continuous Assessment)	Class test, Seminars, Assignments, Class performance	

References:

- **1.** B. K. Guha, (2007), *Degree Physics for Science and Engineering*, Asian Books private limited.
- 2. Halliday, Resnick and Walker, (9th Edition 2010), *Fundamental of Physics (extended)*, John Wiley and Sons.
- 3. H.S. Hans and S.P. Puri, Mechanics, (2nd Edition 2008), Tata Mcgraw Hill.

4. A. B. Gupta, H. Roy, (2009), Thermal Physics, Tata Mc Graw Hill.

5. H. C. Verma, (2002), Concepts of Physics(Part I), Bharati Bhavan Publishers.

6. Brijlal, Sub ramanyam and Hemne, (Multi-coloured, 2007), *Heat Thermodynamics and Statistical Physics*, S. Chand publications.

F.Y. B.Sc Physics Syllabus

Semester I					
Course Code	Course Title	Credits	Lectures /Week		
SPHY102	Vector Calculus-I and Modern Physics	2	3		

Course	Vector Calculus – I and Modern Physics	Credits: 2			
Code: SPHY102		Lectures/Week:3			
511110	Objectives:				
	• To study the basics of Mathematical Physics and to	introduce concepts			
	• To develop quantitative problem-solving skills	in all the topics			
	covered	in an the topics			
	Outcomes:				
	• To apply the basic mathematical concepts and their	applications in			
	physical situations.				
	 To define the properties of the nucleus. To explain the basic concepts of quantum physics 				
	• To explain the basic concepts of quantum physics.	151			
	1. Vector Algebra:	101			
	1.1. Vectors, Scalars, Vector algebra, Laws of Vector	-1			
	algebra, Unit vector, Rectangular unit vectors,				
	Components of a vector, Scalar fields, Vector				
	fields, Problems based on Vector algebra.				
	1.2. Dot or Scalar product, Cross or Vector product, Commutative and Distributive Laws, Scalar Triple				
	product Vector Triple product (Omit proofs)				
Unit I	1.3. Problems and applications based on Dot, Cros	s and			
11	Triple products.	////			
	11	1.61			
1	2. Vector Calculus:	V I			
· · · · · · · · · · · · · · · · · · ·	2.1. Gradient, divergence and curl: The ∇ operator,				
	Gradient Divergence and Curl	57			
	2.2. Distributive Laws for Gradient. Divergence and	Curl			
	(Omit proofs)				
	2.3. Problems based on Gradient, Divergence and Curl	/			
	AND AND				

and the second sec

	Nuclear Physics	15L
Unit II	 Structure of Nuclei: Basic properties of nuclei, Composition, Charge, Size. Rutherford's expt. for estimation of nuclear size Density of nucleus, Mass defect and Binding energy, Packing fraction BE/A vs A plot, stability of nuclei (N Vs Z plot) and problems. Radioactivity: Radioactive disintegration concept of natural and artificial radioactivity Properties of α, β, γ-rays. Laws of radioactive decay, half-life, mean life (derivation not required), units of radioactivity, successive disintegration and equilibriums, radioisotopes Carbon dating, age of earth, Numerical Problems 	
Unit III	 Modern Physics: 1. Introduction to Quantum theory: Black body (definition), Black Body spectrum, Wien's displacement law. Black body (definition), Black Body spectrum, Wien's displacement law. 1.2. Matter waves, wave particle duality, Heisenberg's uncertainty Principle. 1.3. Davisson- Germer experiment, G. P. Thompson experiment. X-Rays: 2.1. Production and properties, Continuous and characteristic X-Ray spectra, 2.2. X-Ray Diffraction, Bragg's Law 2.3. Application of X-Rays Interaction of photon with matter: Compton Effect, Pair production, Photons and Gravity, Gravitational Red Shift.	15L
ICA (Internal Continuous Assessment)	Class test, Seminars, Assignments, Class performance	
 References: 1. H.K.Dass, 2. Dr. S. B. F. Publishers 3. A Beiser 	2018, <i>Mathematical Physics</i> , S Chand Publications Patel, (Reprint 2009), <i>Nuclear physics</i> , New Age International Pvt L	td

	Semester I		
Course Code	Course Title	Credits	Lectures /Week
SPHY1PR	Practical-I	2	6
	I WILL & CA	IN	

F.Y. B.Sc Physics Syllabus

Course	Practical-I	Credits:02Lect/
Code:		Week:06
SPHY1PR		
	Objectives:	
	To correlate theory concepts with practical knowledge	and skills
	Outcomes:	
	• Develop basic experimental Skills through conduct of	experiments.
	Skills:	
	1. Use of Vernier calliper, micrometer screw gauge	
	2. Use of spectrometer	
	3. Use of Travelling microscope	
	4. Estimation of errors and graph plotting	
	Experiments (ANY 8):	
	1. Torsional oscillations	
	2. Bifilar pendulum	-
	3. Angle of prism	
	4. Y by vibrations	
	5. Surface tension by capillary rise	1.1
· · · · ·	6. Refractive index of material of prism using spectrome	ter
	7. CVAT	
1	8. Flywheel	141
· · · · · · · · · · · · · · · · · · ·	9. Flat spiral spring (Determination of Y)	V /
	10. Refractive index of water using Laser light	11

Students will come for two turns of two and half hours each per week for the laboratory session (Performing practical)

- i) Skill experiments: All 4 skill experiments mentioned are compulsory. Students are required to acquire these skills and enter details in their journal.
- ii) Regular Physics Experiments: A minimum of 08 experiments from the practical course are to be performed and reported in the journal. The certified journal must contain all 4 skills and a minimum of 08 regular experiments

Evaluation Scheme

Theory

I. Continuous Assessment (C.A.) - 40 Marks

C.A.-I: Test (MCQ) – 20 Marks of 30 minutes duration

C.A.-II: Assignment of Problems/Seminars/Class Performance - 20 Marks

II. Semester End Examination (SEE) - 60 Marks

Practical

Total marks: 100						
Continuous	Internal Asses	sment (CIA)	Semester H	End Examination	n (SEE)	Total
40%(40 Mai	·ks)	~	60% (60 M	larks)	111	
Rough	Journal	Viva-Voice	Expt -I	Expt- II	Total	
Journal	1.2.	- 22	1111	11	121	
20	10	10	30	30	100	

h

CAN