

JAI HIND COLLEGE BASANTSING INSTITUTE OF SCIENCE &

J.T.LALVANI COLLEGE OF COMMERCE (AUTONOMOUS) "A" Road, Churchgate,Mumbai - 400 020, India.

Affiliated to University of Mumbai

Program : B.Sc. Mathematics

Course: Calculus I

Semester I

Credit Based Semester and Grading System (CBSGS) with effect from the academic year 2021-22

F.Y. B.Sc. Mathematics Syllabus

	Semester I		
Course Code	Course Title	Credits	Lectures /Week
SMAT 101	CALCULUS I	02	03
	I WILL CA	N	

Semester I – Theory

SMAT	Calculus-I Total		
101	(Credits: 02 Lectures/Week:03)		
	Course Objectives:		
	1. To introduce real numbers and subsets of reals such as set of rational numbers, set of		
	irrational numbers.		
	2. To understand the applications of differential equations		
	3. To acquaint with properties of real numbers such as Density of rational numbers a	ind	
	irrational number, Hausdorff property, fundamental theorems in real analysis like		
	Archimedean property, Bolzano-Weierstrass theorem		
	4. To introduce the concept of sequence of real numbers and the notion of convergent		
	sequences		
	Course Outcomes:		
	1. To enhance the analytical skills and bolster confidence and interest in pure mathe	matics.	
	2. To enable students to formulate and solve problems from a mathematical perspect	ive.	
	3. To analyse and solve real-world problems using the concept of differential equations,		
	fundamental theorems in real analysis,		
	Differential Faustions:	15T	
	1. Solutions of homogeneous and non-homogeneous differential equations of first	131	
	order and first degree. Notion of partial derivative, solving exact differential		
	equations.		
	2. Rules for finding integrating factor (I.F) (without proof) for non-exact		
	equations such as:		
	3. (i) $\frac{1}{1}$ is an I.F if $Mx + Ny \neq 0$ and $M dx + N dy$ is homogeneous		
	M_{X+Ny}		
	a. (ii) $\frac{1}{Mx - Ny}$ is an I.F if $Mx - Ny \neq 0$ and $M dx + N dy$		
Unit I	b. is of the type $f_1(xy)y dx + f_2(xy)x dy$		
C III C	c. (<i>iii</i>) $e^{\int f(x) dx}$ is an I.F if $N \neq 0$ and $\frac{1}{N} \left(\frac{\partial M}{\partial x} - \frac{\partial N}{\partial x} \right)$ is a		
	d. function of x alone say $f(x)$.		
	$\int f(y) dy \text{ is an IF if } M \neq 0 \text{ and } \frac{1}{2} \left(\frac{\partial N}{\partial M} - \frac{\partial M}{\partial M} \right) \text{ is a}$		
	e. (<i>iv</i>) et al. (is all i.i. if $M \neq 0$ and $M(\partial_x = \partial_y)$ is a		
	f. function of y alone say $f(y)$.		
	4. Finding solutions of first order differential equations of the type $\frac{dy}{dx} + P(x)y =$		
	$Q(x)y^n$ for $n \ge 0$. Applications to orthogonal trajectories, population growth, and	ł	
	finding the current at a given time.		
	Real Numbers:	15L	
	1. Real number system \mathbb{R} and order properties of \mathbb{R} , Elementary consequences of	f	
	these properties including AM-GM inequality.		
	2. Absolute value function (modulus) on \mathbb{R} , Examples and basic properties.		
Unit II	3. Triangle inequality, Intervals and neighbour hoods.		
	4. Bounded sets of real numbers, Supremum (I.u.b) and Infimum (g.l.b), l.u.b an	a	
	g.l.b property and its applications		
	5. Archimedean property and its applications like Density theorem, nested interval		
	theorem, existence of square root of 2		
	Sequences	151	
Unit III	1. Definition of a sequence and examples. Convergence and divergence of	1.76	
	sequences, Convergent sequence is bounded, Uniqueness of limit if it exists.		

	Examples on convergence of a sequence using ϵ - n_0 definition.	
2.	Sandwich theorem, Algebra of convergent sequences, Examples.	
3.	Bounded sequences, Monotone sequences and their convergence.	
4.	Standard examples such as $a^n, \frac{a^n}{n!}, (1+\frac{1}{n})^n, 1+\frac{1}{1!}+\frac{1}{2!}+\dots+\frac{1}{n!}, a^{\frac{1}{n}}(a>0), n^{\frac{1}{n}}$	
5.	Cauchy sequences and their convergence, sub sequences and their convergence,	
	Bolzano-Weierstrass theorem.	

References:

- **1.** Dennis Zill, A first course in differential equations with modelling applications, Brooks/Cole ninth edition, 2012.
- 2. R.G.BartleandD.R.Sherbert, Introduction to real analysis, John Wileyand Sons, third edition, 2010
- 3. Ajit Kumar and S.Kumaresan, A basic course in real analysis, CRC press 2014.

Additional References:

- 1. G.F. Simmons, Differential equations with applications and historical notes, McGraw Hill, 1972.
- 2. R.R. Gold berg, Method of real analysis, Oxford and IBH, 1984.
- 3. T.M. Apostol, Calculus Volume I, second edition, Wiley and Sons (Asia), 1967.
- 4. K.G. Binmore, Mathematical Analysis, Cambridge university press, 1984.

F.Y. B.Sc. Mathematics Syl	labus
----------------------------	-------

Semester I				
Course Code	Course Title	Credits	Lectures /Week	
SMAT 102	ALGEBRA I	02	03	
	I WILL C	AN		

Semester I

SMAT	Algebra I	Fotal no. of		
102	(Credits: 02 Lectures/Week:03) Lect			
	Course Objectives:			
	1. To introduce the concepts of sets, functions and relation, bijective functions and to get an			
	idea of graph of a function.			
	2. To understand the concept of divisibility in integers and the principle of mathematical			
	induction.			
	3. Toacquire the knowledge of theory of congruences and its applications like	e Euler's		
	theorem, Fermat's little theorem, Wilson's theorem			
	Course Outcomes:			
	Students will be able to:			
	1. Explain the basic concepts like sets, functions, relations, equivalence relations	ations etc.		
	2. Apply different techniques of proving theorems, lemmas using induction, proof by			
	contradiction etc.			
	3. To solve divisibility in integers, divisional gorithm, Euclidean algorithm a	and Linear		
	Diophantine equation.	· · · · ·		
	4. To assess the parameters of equivalence relation, equivalent classes, definiting	ion of partition,		
	Euler's function, Chinese remainder theorem and its applications.			
	Sets and Functions:	15L		
	1. Negation of a statement, use of quantifiers, sets, union and intersection of			
	sets, complement of a set, De Morgan's law, Cartesian product of sets.			
	2. Definition of a function; domain, co-domain and range of a function,			
	bijective functions, examples, Graph of a function, injective, surjective,			
Unit I	when defined			
	3 Invertible functions bijective functions are invertible and conversely			
	Examples of functions including constant identity projection inclusion			
	4. Image and inverse image of a set under f interrelated with union.			
	intersection and complement. Finite and infinite sets. Countable set and its			
	examples such as \mathbb{Z} , \mathbb{Q} . Uncountable set and its examples.			
	Integers and Divisibility:	15L		
	1. Well-ordering property, First and second principle of mathematical			
	induction as a con-sequence of well-ordering property			
	2. Divisibility in integers, division algorithm, existence uniqueness of			
	greatest common divisor (g.c.d.) and least common multiple (l.c.m.) and	1		
Unit II	their basic properties. Bezout's identity and its applications.			
	3. Euclidean algorithm, Primes, Euclid's lemma, Fundamental theorem of			
	arithmetic, the set of primes is infinite.			
	4. The necessary and sufficient condition to have a solution for the linear			
	Diophantine equation $ax + by = c$. Solving of linear Diophantine			
	equations with examples.			
	Theory of Congruences:	15L		
	1. Equivalence relation, equivalence classes and properties, Definition of a			
	partition,			
Unit III	nondelementary properties. Concruences is an equivalence relation on 7	.0		
	residue classes and partition of \mathbb{Z} addition modulor, multiplication modulor			
	examples	¹ ,		
	2. Linear congruences. Chinese remainder theorem and its applications			
	3. Euler's <i>a</i> function, Euler's theorem. Fermat's little theorem. Wilson's			
	theorem and their applications.			
	The second s			

References:

- 1. S. Kumaresan, Ajit Kumar and Bhaba Kumar Sarma, A foundation course in Mathematics, first edition, Narosa publication house, 2018.
- 2. David M. Burton, Elementary number theory, seventh edition, Tata McGraw-Hill edition, 2011

Additional References:

- 1. Ivan Niven, Herbert S. Zuckerman, Introduction to the theory of numbers, fifth edition, Wiley eastern limited, 2008
- 2. R.G. Bartle and D.R. Sher bert, Introduction to real analysis, third edition, John Wiley and Sons, 2010
- 3. Jones and Jones, Elementary number theory, second edition, Springer, 2011
- 4. I.S. Luthar, Sets, functions and numbers, Narosa publishing house, 2005
- 5. Thomas Koshy, Elementary number theory with applications, Academic press, 2007

F.Y. B.Sc. Mathematics Syllabus

Semester I – Practical

Course		Course Title: PRACTICAL-I	Credits: 2
Code:			
SMAT	'1 PR1		
Course	Objecti	ves:	
\succ	To acqu	ire the knowledge of applications of Euler's theorem, Fermat's little t	heorem,
	Wilson'	s theorem	
\succ	To acqu	aint with Density of rational numbers and irrational number, Hausdon	rff property,
	fundame	ental theorems in real analysis like Archimedean property, Bolzano-W	eierstrass
	theorem		
	_	Contraction of the second s	
Course	e Outco	mes	
\triangleright	To asses	ss the parameters of equivalence relation, equivalent classes, definition	n of partition,
	Euler's	function, Chinese remainder theorem	
	To solve	e real-world problems using the concept of differential equations, func	lamental
	theorem	s in real analysis,	
	_	WILLS CAN	_
Practic	al for Ca	alculus I	
1)	Problem	is based on absolute value and properties of \mathbb{R}	
2)	Problem	s on bounded sets and Archimedean property.	
3)	Problem	s on convergent sequences.	
4)	Problem	is based on sub sequences and Cauchy sequences.	
5)	Solving	exact and non-exact differential equations.	
6)	6) Solving linear differential equations, Bernoulli's differential equations and its		
,	applications.		
D (1	1.6	A distant //	
Practic	al for Al	gebra I	C' 1'
1)	Function	ns (image and inverse image), injective, surjective, bijective functi	ons, finding
2)	Inverses Drohlan	s of bijective functions.	
2) 3)	Problem	is on mothematical induction. Evalidean algorithm in 7	
3) (1)	Droblen	is on fundamental theorem of arithmetic and solving linear Dionhe	ntino
4)	riotien	is on rundamental theorem of artifilietic and solving mear Diopna	untine
5)	Problem	us. Is on congruences, equivalence relation and Chinese remainder theore	m
5) 6)	Problem	as on Euler's a function. Fermat's little theorem. Wilson's theorem	111.
U)	TTOUTEIL	is on Euler's ψ function, remains in the theorem, whison's theorem	1.
		AN NE	

66

-

~___

Evaluation Scheme

- I. Continuous Assessment (C.A.) 40 Marks C.A.-I : Test (MCQ) – 20 Marks C.A.-II: Assingnment /Project- 20 Marks
- Semester End Examination (SEE) 60 Marks II. ΑN