

JAI HIND COLLEGE BASANTSING INSTITUTE OF SCIENCE &

J. T. LALVANI COLLEGE OF COMMERCE (AUTONOMOUS) 'A' ROAD, CHURCHGATE, MUMBAI - 400020, INDIA

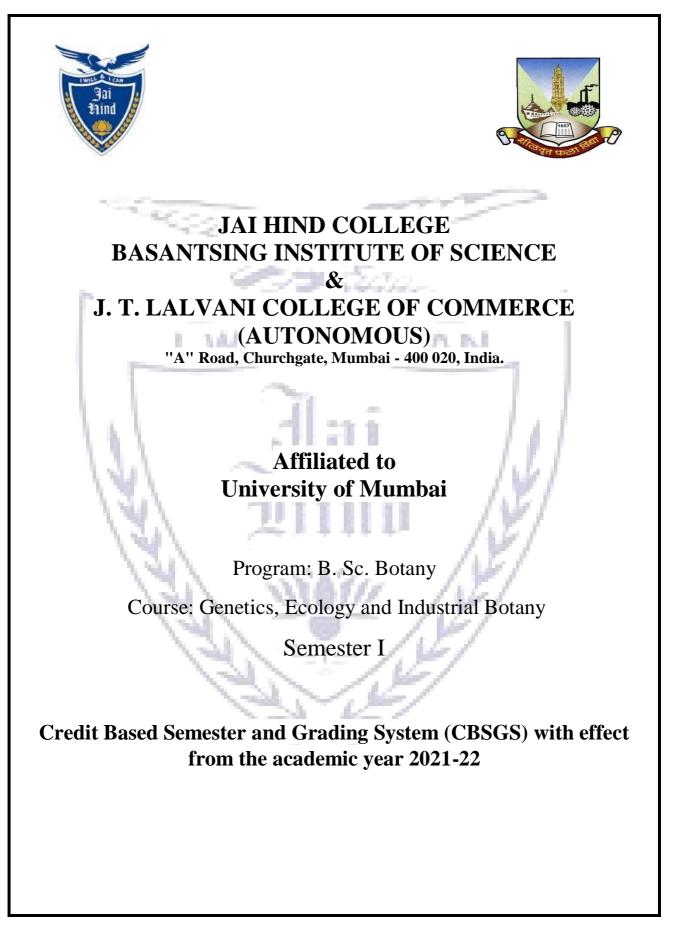
Affiliated to University of Mumbai

Program: B.Sc. Botany Course: Algae, Fungi and Lichens

Semester I

Credit Based Semester and Grading System (CBSGS) with effect from the academic year 2021 - 22

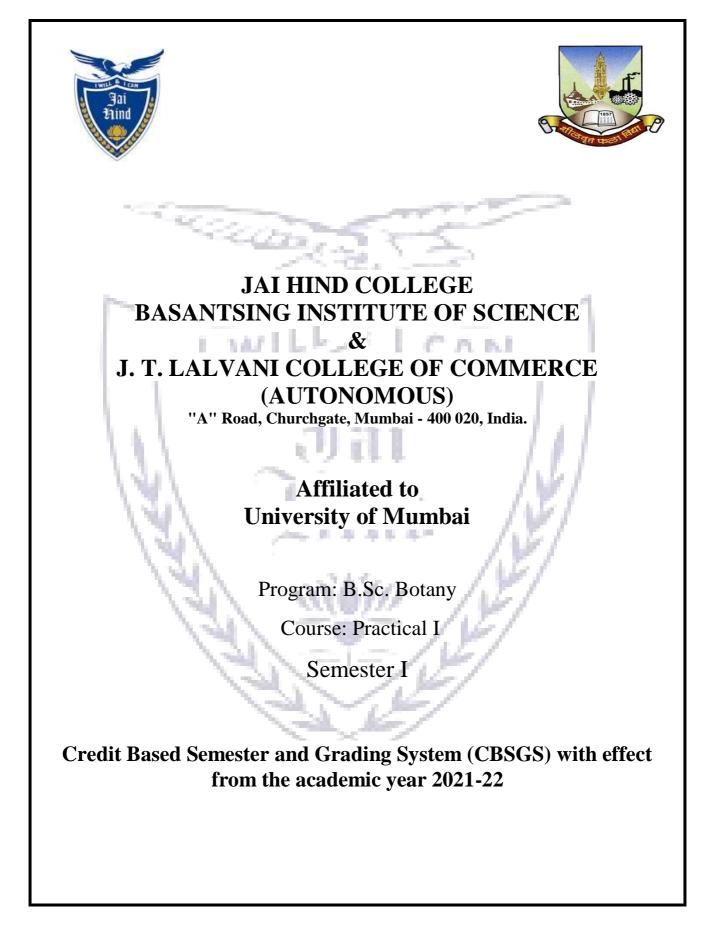
	Semester I		
Course	Course Title	Credits	Lectures
Code			/Week
SBOT101	Algae, Fungi and Lichens	2	3



Semester I – Theory

Course Code: SBOT101	PAPER I Algae, Fungi and Lichens (Credits: 2 Lectures/Week: 3)
	 Learning Objectives: Learn the morphology, structure and importance of the organisms and differentiate between various groups of Algae, Fungi and Lichens. Learn the life cycles of individuals belonging to Chlorophyta, Cyanophyta and Phycomycetes. Learn the economic importance of each group. Study and understand the structure of algae and fungi in an association Classify lichens on the basis of their habitat, internal structure, fungal partner and thallus morphology. Study the details about origin, association and relations between the phyco and mycobiont Learn economic importance and ecological significance of lichens Study the diseases and parasites on lichens
	 Learning Outcomes: Students will be able to: Differentiate and compare between different classes of algae from their syllabus. Discuss life cycles and systematic position of algae prescribed in the syllabus Differentiate between different Modes of nutrition in fungi. Discuss life cycles and systematic position of fungi prescribed in the syllabus Differentiate between types of lichen thallus on the basis of their internal and external structure. Assess and understand the economic importance of lichens especially in food and medicine Grasp the basic understanding of the ecological significance of the presence of lichens and appreciate their role in the environment.
Unit I	ALGAE: 15L • Outline of Classification according to G.M. Smith, General characters, thallus structure, reproduction of Chlorophyta and Cyanophyta. 15L • Life cycle and systematic position of: • Nostoc • Oscillatoria/Arthrospira • Chlamydomonas/Chlorella • Spirogyra • Economic importance of Algae with respect to Chlorophyta and Cyanophyta

Unit II	FUNGI AND PLANT PATHOLOGY	15L
	• Outline of Classification according to G.M. Smith,	
	General characters, thallus structure, reproduction,	
	economic importance of Phycomycetes,	
	• Structure, life cycle and systematic position of:	
	 Rhizopus 	
	 Saprolegnia 	
	 Phytophthora 	
	 Albugo. 	
	 Modes of nutrition in Fungi (Saprophytism, predation, 	
	mutualism and Parasitism)	
Unit III	LICHENS	15L
	• History of Lichenology, Origin of Lichen, Present trends in	
	classification, Kinds of Lichens, Development of Lichen	
	Thallus.	
	• Relation between components of Lichen thallus and Nature of	
	lichen thallus (external and internal structure - Foliose,	
	Crustose, Fruticose, Squamulose)	
	• Pseudo-Lichens, fossil lichens, specialized structure in lichen	
	thallus, Reproduction in lichen	
· · · ·	• Distribution of Lichen, Habit and Habitat	
	 Economic importance, Ecology of lichens, Diseases of lichens 	
11	• Microscopy – Principle and working of Simple and Compound	
	Light microscope	
References:	4. JL	
-	ee, Das & Datta, College Botany, Volume II, New Central Book Agency, 2	
	tta B. R. & Sinha, A. K., Botany for degree students - Algae, S. Cha	and,1st
Edition,		
	tta B. R. & Sinha, A. K., Botany for degree students - Fungi, S. Cha	and,1st
Edition,		
• Smith C	G.M., Cryptogamic Botany – Algae and Fungi, Vol. I, McGraw Hill Public:	ations,
1955		
	ALL LE	



Semester I			
Course Code	Course Title	Credits	Lectures /Week
SBOT102	Genetics, Ecology and Industrial Botany	2	3
	I WILL & I CA	IN IN	

F.Y. B.Sc. Botany Syllabus

Course Code: SBOT102	PAPER II Mendelian Genetics, Ecology and Industrial Botany (Credits: 2 Lectures/Week: 3)	
5001102	Learning Objectives:	
	 Revise the basic principles of Mendelian Genetics and further learn a variety of exceptions and extensions of Mendelian principles. These will include multiple alleles, modified dominance relationships, gene interactions leading to modified Mendelian ratios, essential genes and lethal alleles, penetrance and expressivity and dual influence of genes 	
	and the environment on phenotypic expression.	
	• To create an in-depth awareness about the different aspects of the environment such as different types, components and the flora and fauna involved.	
~	• Study the different applications of commercially used plants for	
	different products of use to mankind.	
	L LWILS CAN	
	Learning Outcomes: Students will be able to:	
	• Understand the concept of gene interaction and that genes do not	
	 always function independently in determining the phenotypic characteristics. With appropriate examples they will understand the influence of non-allelic genes on the phenotype of the organism. Understand the concept of penetrance and expressivity as studied for any gene. With appropriate examples covered here, they will realise that penetrance and expressivity for any gene under study depends on the dual effect of genotype of the organism as well its internal and external environmental factors and it may remain constant or be variable. Further, they will be able to understand the multiple internal and external environmental factors influencing the expressivity of many genes. Gain theoretical knowledge and learn to apply it for the betterment of the environment. Provide solutions to plant suitable adaptive plants in their respective 	
	area.	
	 Differentiate between primary and secondary metabolites. 	
	• Comment upon commercial uses of Primary and Secondary	
	metabolites covered in their syllabus.	

Unit I	MENDELIAN GENETICS:	15L
Unit I		15L
	dominance, Incomplete dominance, codominance and concept	
	of essential and lethal genes. Test cross, back cross ratios,	
	• Di-hybrid ratios and their modifications	
	Gene interactions	
	• Epistasis: Recessive, Dominant and Duplicate Recessive and	
	Duplicate Dominant	
	• Gene expression and environment: penetrance and expressivity,	
	effects of environment (Age, Sex, Temperature and chemicals).	
	• Concept of multiple alleles.	
Unit II	ECOLOGY:	15L
	• Energy pyramids, energy flow in an ecosystem.	
	• Types of ecosystems: aquatic and terrestrial	
	• Ecological adaptations in plants (Morphological and	
~	Anatomical)	
	 Hydrophytes – submerged, floating, rooted 	
	 Mesophytes Submerged, Houting, Footed 	
	 Halophytes – accumulators and excretors 	
	 Xerophytes – drought resisting; drought enduring; 	
	drought escaping and drought evading	
TT •4 TTT	Biogeochemical cycles: Carbon, Nitrogen and Water.	1 7 7
Unit III	INDUSTRIAL BOTANY:	15L
	• Corn starch: Extraction, Identification and various products from	
- N	corn starch.	
- N	• Soya Proteins: Separation of Proteins from Soya & its applications	
1	and recent health hazards and allergy associated with soy products.	
	• Castor oil: Extraction (Solvent extraction), various products from	
	Castor oil.	
	• Commercial importance, geographical distribution, production and	
	economic policy of	
	 Essential oils: Eucalyptus, Rosemary, Zingiber, Mentha 	
	 Tannins: Catechu, Myrobalan (Terminalliachebula) 	
	 Resins: Turmeric and Asafoetida, Colophony, Benzoin 	
	Alkaloids: Adhatoda and Atropa belladonna	
Additional I	References:	
Russe	ell P. J., iGenetics – A Molecular approach, Pearson Education, Inc., s	econd
	on, 2006	
	hester A. M. Genetics - A survey of Principles of heredity, A. M., Hou	ghton
	in Company, 1972	U
	a S. C., Fundamentals of ecology and environmental biology, New Central	Book
	cy, 2010	200K
-	n E. P. & Barrett G. W. Fundamentals of Ecology, E. P., Peter Marshall,	Fifth
	on, 2005	, 1 11(11
	,	
	har S. L., Economic Botany in the tropics, MacMillan India Limited, 1981	
• Hill A	A., Economic Botany, McGraw Hill Publication, 1937	

F.Y. B.Sc. Botany Syllabus

	Semester I		
Course Code	Course Title	Credits	Lectures /Week
SBOT1PR	Practical I	2	6
	I WILL CI	IN	

Course Code: SBOT 1PR	Course Title: Practical I	Credits 2
Learning Object		
	right field microscopy for observing Algae, Fungi and Lichens	
	v variation in members of Chlorophyta and Cyanophyta	
-	the morphology and anatomy of primitive fungi Phycomycetes	
-	rstand economic importance of all the lower forms of life	
	rstand Mendel's Laws and modified Mendelian ratios by solving pro	blems
	yping using blood as a medium	
•	/ multiple alleles with the help of laboratory exercises	
	y the plants adapted to different environments as per morphologica	l and anatomical
adaptatio		i and anatonnear
-	t presence of primary and secondary metabolites	
	v statistics with reference to biological problems.	
• TO study	statistics with reference to biological problems.	
Learning Outco	omes:	-
~	will be able to:	
	nd mount specimens mentioned above on a light microscope.	
	the different specimens	
	tiate between alga	
	ntrol measures of harmful fungi	
	cal and economic significance of all species	
	e biological examples with Mendelian and non-Mendelian ratios	1
	tiate between alleles and correlate their interrelationships	1
	the detection, significance and location of both primary and secondar	ry metabolites in
plants.	ie detection, significance and location of both primary and seconda	ry metabolites m
-	and identify essential oils, tannins, resins and alkaloids.	
	atistical methods to analyse their data.	
• Apply sta	atistical methods to analyse their data.	
	PRACTICAL PAPER I	
	copy – study of parts of microscope	
2 Study of	of stages in the life cycle of Nostoc from fresh/ preserved material and	l permanent slide
and peri	of stages in the life cycle of Oscillatoria/Arthrospira from fresh/ pr manent slide	
material	of stages in the life cycle of <i>Chlamydomonas/ Chlorella</i> from l and permanent slide	-
5 Study of Slides	of stages in the life cycle of Spirogyra from fresh/ preserved materia	al and permanent
6 Econom	nic importance of Algae with respect to Chlorophyta and Cyanophyta	ι.
	of stages in the life cycle of <i>Rhizopus</i> from fresh/ preserved materia	
	of stages in the life cycle of Saprolegnia from fresh/ preserved materi	al and permanent
	of stages in the life cycle of <i>Phytophthora</i> from fresh/ preserv	red material and
	ent slides	
-	ent slides of stages in the life cycle of <i>Albugo</i> from material and permanent slide	es

12	Identification of Lichens (Permanent slides and specimens) – based on
13	morphology/anatomy Economic importance of Lichens
13	PRACTICAL PAPER II
1	Genetics related Problems on:
I	Monohybrid cross
	 Dihybrid crosses
	 Probability
	 multiple alleles
	 Chi- square
	• Chi- square
2	Blood typing: ABO groups and Rh factor.
3	Identification of plants adapted to different environmental conditions and internal structure
	adaptations:
	• Hydrophytes - free floating (Pistia/Eichhornia); Rooted floating (Nymphaea);
	Submerged (<i>Hydrilla</i>)
	• Mesophytes (any common plant)
	• Xerophytes – Drought evading – Bryophyllum; Drought escaping - Sorghum;
	Drought enduring - Opuntia & Drought resisting – Nerium
	• Halophytes – Salt excretors – Avicennia; Salt accumulators - Sueda
4	Qualitative tests for carbohydrates, proteins and fats
5	Qualitative tests for
	• Essential oils: Eucalyptus, Rosemary, Zingiber, Mentha
	• Tannins: Acacia catechu, Terminalliachebula
	Resins: Turmeric, Asafoetida, Colophony, Benzoin
	Alkaloids: Adhatodavasica and Atropa belladonna
6	Biostatistics
	Calculation of:
	 Mean
	 Median
	 Mode
	 Standard deviation
	 Standard deviation Frequency distribution, graphical representation of data
	• Frequency distribution, graphical representation of data
	 Frequency distribution, graphical representation of data Frequency polygon
	 Frequency distribution, graphical representation of data Frequency polygon Histogram
	 Frequency distribution, graphical representation of data Frequency polygon Histogram

Evaluation Scheme:

[A]Evaluation scheme for Theory Courses:

I. Continuous Assessment (C.A.) - 40 Marks

- (i) C.A.-I: Test/continuous evaluation in given time frame with Surprise test 20 Marks
- (ii) C.A.-II: Assignment/project/presentation /surprise test/ continuous evaluation in given time frame 20 Marks
- II. Semester End Examination (SEE)- 60 Marks
- [B] Evaluation scheme for Practical courses: (SEE 60 Marks)
 - Internal Assessment -40 Marks: Journal/Viva/Experiment

NOTE:

- **1.** A minimum of ONE field excursion habitat studies are compulsory. Field work of not less than eight hours duration is equivalent to one period per week for a batch of fifteen students.
- 2. A candidate will be allowed to appear for the practical examinations only if he/she submits a certified journal of FYBSc Botany and the Field Report or a certificate from the Head of the Department/Institute to the effect that the candidate has completed the practical course of FYBSc Botany as per the minimum requirements. In case of loss of journal, a candidate must produce a certificate from the Head of the Department/Institute that the practical for the academic year were completed by the student. However, such a candidate will be allowed to appear for the practical examination but the marks allotted for the journal will not be granted.