

JAI HIND COLLEGE BASANTSING INSTITUTE OF SCIENCE &

J.T.LALVANI COLLEGE OF COMMERCE (AUTONOMOUS)

"A" Road, Churchgate, Mumbai - 400 020, India.

Affiliated to University of Mumbai

Program: BSc

Proposed Course: Physics (APPLIED COMPONENT)

Semester VI

Credit Based Semester and Grading System (CBGS) with effect from the academic year 2020-21

T.Y.B.S.c Physics (Applied Component) Syllabus

Academic year 2020-2021

Semester VI						
Course Code	Course Title	Credits Lectures /Week				
SPHY6AC	8085 microprocessor and C++ programming	2.5	4			
SPHY6ACPR	Practical	2.5	4			

Semester VI Applied Component – Theory

Course Code:	Course Title -: (Applied Component) 8085 microprocessor and C++ programming.			
SPHY6AC	(Credits: 2.5, Lectures/Week: 04)			
	Objectives The course introduces students to microprocessor and C++ programming techniques and application. Outcomes:			
	To understand microprocessor programming and application. To understand C++ programming and application.			
Unit – I	Introduction to 8085 assembly language programming Concept of multiplexer, demultiplexer and D-latch Introduction: Microprocessor as a programmable device; Organization of microprocessor based system, low-level and high-level languages. 8085 Programming Model. 8085 instruction, data format and storage. 8085 microprocessor architecture. 8085 basic instructions, their operations and their applications: Data transfer operations, Addressing Modes, Logic Operations, Branch Operations, writing assembly language programs.	15L		
Unit – II Unit – III	Advanced 8085 programming and 8255(PPI) Programming techniques: Looping, Counting, and Indexing. Advanced instructions and applications: Additional instructions and instructions related to 16-bit operations and their applications. The 8255 Programmable peripheral Interface: Block Diagram of the 8255, Mode 0 – simple input/ output mode, BSR (Bit Set/Reset Mode) C++ programming I A look at the Procedure-Oriented Programming, Object-Oriented Programming Paradigm; Data types and Operators. Control Statements: if statement, if-else-if statement, switch statement, Loop Statements: for loop, while loop, do-while loop, Breaking Control statements: break statement, continue statement, goto statement. Functions: The Main Function, Function Prototyping, Call by Reference, Return by Reference, Inline Function, Default Arguments, Constant	15L 15L		
Unit – IV	Argument, Function Overloading, Math Library Functions. C++ programming II Arrays: Array notation, Array declaration, Array initialization, Processing with array, Functions and Arrays, Multidimensional array. Pointers: Pointer operator, Address operator, Pointer declaration, Pointer arithmetic, Pointer and functions, Pointer and arrays. Introduction to structures, classes and objects: Structure declaration, Structure initialization, Declaration of classes, Member functions, Defining object of a class.	15L		
CA (Continuous Assessment)	Class test/Seminars/ Assignments and Class performance.			

References:

Ramesh Gaonkar (5th Ed.) Microprocessor Architecture, programming & Application with the 8085, Prentice Hall of India.

D. Ravichandran, *Programming with C++*, Tata McGraw-Hill Publishing Company Limited.

Tony Gaddis (3^{rd} Ed.) Starting out with C++ Addison Wesley Publishing Company.

E Balagurusamy (3rd Ed.) Object Oriented Programming with C++, Tata McGraw-Hill Publishing Company Limited.

Course Code	urse Code SEMESTER-VI EI PRACTICALS					
SPHY6ACPR	(Credits: 2.5, Lectures/Week: 04)					
	 Study of 8085 microprocessor kit and commands. Execution of simple programs like 8-bit addition, subtraction. 					
	2. Assembly language program to add given set of numbers. Store and display the result.					
	3. Assembly language program to add two 16-bit numbers. Store and display the result.					
	 Assembly language program to multiply two 8-bit numbers. Store and display the result. 					
	Assembly language program to transfer a memory block from one location to another. Store and display the result.					
	 Assembly language program to divide two, 8-bit nos. Display quotient & remainder. 					
	7. Assembly language program to arrange given set of 8-bit numbers in ascending/descending order.					
	8. Write a program to blink Port C bit n (n = 0 to 7 any one) of the 8255 PPI available on your 8085 kit. Use Bit Set/Reset mode.					
	9. C++ program based on Input, Output Statements.					
	10. C++ program based on Control Statements.					
	11. C++ program to study function declaration, function calling & function prototype.					
	12. C++ program based on Arrays					
	13. C++ program based on Pointers.					
	14. C++ program based on Classes and Objects.					
CA	Continuous practical evaluation /seminar /					
(Continuous	Journal Report and Viva-voce.					
Assessment)						

References:

Ramesh Gaonkar (5th Ed.) *Microprocessor Architecture, programming & Application with the 8085*, Prentice Hall of India.

D. Ravichandran, *Programming with C*++ , Tata McGraw-Hill Publishing Company Limited.

Tony Gaddis (3^{rd} Ed.) *Starting out with C++* Addison Wesley Publishing Company.

E Balagurusamy(3^{rd} Ed.) *Object Oriented Programming with C++*, Tata McGraw-Hill Publishing Company Limited.

[A] Students will come for one turn of 3 hours per week for the laboratory sessions(performing practicals).

A minimum of 8 experiments from practical course are to be performed and reported in the journal.

The certified journal must contain a minimum of 8 experiments from the practical course.

Evaluation Scheme

[A] Evaluation scheme for Theory course SPHY6AC

- Continuous Assessment (C.A.) 40 Marks
 - C.A.-I: Test 20 Marks of 40 mins. Duration
 - C.A. –II: Assignment of problems/seminars/class performance
- Semester End Examination (SEE)- 60 Marks

[B] Evaluation scheme for Practical course

Total marks: 100						
Continuous Assessment (CA)		(CA)	Semester End Examination (SEE)	Total		
40% (40 marks)			60% (60 marks)			
Rough	Journal	Viva-Voce	Experiment	Total		
journal	W/		T= \ /.V/			
20	10	10	60	100		

Practical examination will be of two and half hours. Students will perform 1 experiment of two and half hours duration.

Note: Certified journal is a must for the student to appear for practical examination.