

JAI HIND COLLEGE BASANTSING INSTITUTE OF SCIENCE

& J.T.LALVANI COLLEGE OF COMMERCE (AUTONOMOUS) "A" Road, Churchgate, Mumbai - 400 020, India.

> Affiliated to University of Mumbai

Program :B.Sc

Proposed Course : Microbiology

Semester VI

CreditBasedSemesterandGradingSystem(CBGS)witheffectfrom the academic year2020-21

T.Y.B.Sc. Microbiology Syllabus

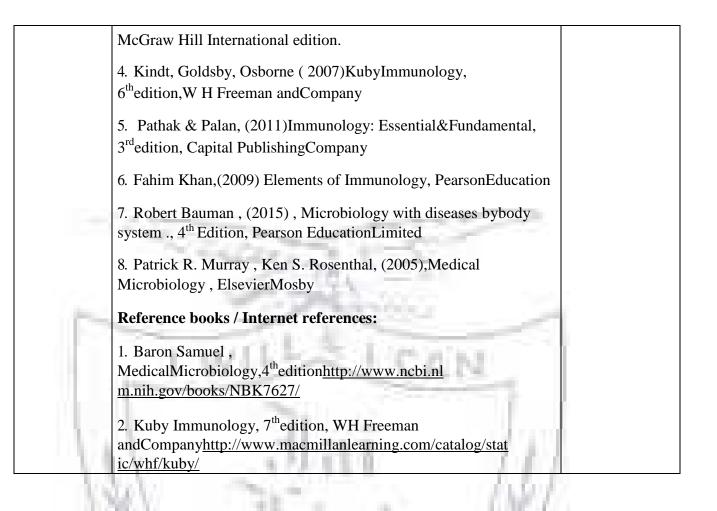
Academic year 2020-2021

	Semester VI		
Course Code	Course Title	Credits	Lectures /Week
SMIC601	rDNA TECHNOLOGY, BIOINFORMATICS & VIROLOGY	2.5	04
UNIT 1	Recombinant DNA Technology	-	
UNIT 2	Applications of rDNA Technology & Bioinformatics		
UNIT 3	Regulation & Basic Virology		
Unit 4	Advanced Virology		
SMIC602	MEDICAL MICROBIOLOGY AND IMMUNOLOGY PART-II	2.5	04
UNIT 1	Study of vector borne, sexually transmitted and CNS infections	N.	
UNIT 2	Chemotherapy of infectious agents		
UNIT 3	Immunology –I		
Unit 4	Immunology –II		111
SMIC603	MICROBIAL BIOCHEMISTRY: PART-II	2.5	04
UNIT 1	Lipid Metabolism & Catabolism of Hydrocarbons	1/1	11
UNIT 2	Metabolism of Proteins and Nucleic Acids	12.4	
UNIT 3	Metabolic Regulation		
Unit 4	Prokaryotic Photosynthesis & Inorganic Metabolism	185	£
SMIC604	BIOPROCESS TECHNOLOGY- PART-II	2.5	04
UNIT 1	Advances in bioprocess technology	58.5	
UNIT 2	Pharmaceutical microbiology	61	
UNIT 3	Instrumentation and IPR		
Unit 4	Industrial fermentations	61 T	
SMIC6PR1	Practical	03	08
SMIC6PR2	Practical	03	08

CourseCo de SMIC601	Course Title: rDNA TECHNOLOGY, BIOINFORMATICS & VIRO (Credits:2.5 Lectures/Week:04)	DLOGY
	 LearningObjectives: To study recombinant DNA technology and its applications To understand plasmid and transposons and their importance To know role of bioinformatics in biology To learn about Viruses Learning Outcomes: On completion of this course students will learn about the recombinant D technology, use of bioinformatic tools and viruses. 	DNA
Unit I	Recombinant DNA Technology	15 L
1.1	Model Organismsi.Characteristics of a modelorganismii.Examples of model organisms used instudy	01
1.2	Plasmids and Transposable elementsi.Physicalnatureii.Detection and isolation ofplasmidsiii.Plasmid incompatibility and Plasmidcuringiv.Cell to cell transfer ofplasmidsv.Types of plasmids: Resistance Plasmids, Plasmids encoding Toxins and other virulence characteristics, Col factor, Degradativeplasmids	02
1.3	Transposable Elements in Prokaryotesi.Insertionsequencesii.Transposons: Types, Structure and properties, Mechanism of transposition,Integrons	02
1.4	Basic Steps in Gene Cloning	01
1.5	Cutting and joining DNA molecules Restriction and modification systems, restriction endonucleases, DNA ligases, adaptors and linkers	03

1.6	 Vectors i. Plasmids as cloning vectors-, pBR322 vector, cloning genesinto pBR322 ii. Phage as cloning vectors, cloning genes into phagevector iii. Cosmids iv. Phagemids v. Shuttlevectors vi. YAC vii. BAC 	03
1.7	Methods of transformation	01
1.8	Screening and selection methods for identification and isolation of recombinant cells	02
Unit II	Applications of rDNATechnology & Bioinformatics	15 L
2.1	PCR - different types of PCR (Reverse transcriptase PCR, Real time quantitative PCR)	02
2.2	Construction of genomic library and cDNA library	02
2.3	Applications of recombinant DNA technology: Site specific mutagenesis of DNA, Uses of DNA polymorphism, STRS and VNTRS, DNA molecular testing for human genetic diseases (Only RFLP), DNA typing, gene therapy, RNAi therapeutics, Genetic engineering of plants and animals.	06
2.4	 Bioinformatics Introduction to Bioinformatics - Goal, Scope andapplications Genomics - structural, functional and comparativegenomics Proteomics- structural and functionalproteomics. Transcriptomics, Metabolomics, Pharmacogenomics. Database, tools and their uses-NCBI, ExPASY proteomics server, EBI vi. Importance, Types and classification ofdatabases Nucleic acid sequence databases- EMBL, DDBJ,GenBank Protein sequence databases- PIR,SWISS-PROT Metabolic Databases - KEGG,METACYC vii. Sequence alignment tools- BLAST and FASTA with one example 	05
Unit III	Regulation & Basic Virology	15 L
3.1	i. Lac operon and problems on Lacoperon ii. Trp operon	07

3.2	Viral architecture- Capsid, viral genome and envelope	02
3.3	Viral classification (Baltimore classification)	01
3.4	Viral replication cycle - Attachment, penetration, uncoating, types of viral genome, their replication, assembly, maturation & release.	02
3.5	Regulation of lytic and lysogenic pathway of lambda phage	03
Unit IV	Advanced Virology	15 L
4.1	Structure and Lifecycle of TMV, T4, Influenza virus, SARS-COV-2, HIV	05
4.2	Cultivation of viruses - cell culture techniques, embryonated egg, laboratory animals, Inclusion bodies, Cytopathic effects	03
4.3	Visualization and enumeration of virus particlesi.Measurement of infectiousunitsii.Plaqueassayiii.Fluorescent focus assayiv.Infectious centerassayv.Transformationassayvi.Endpoint dilutionassay.vii.Measurement of virus particles and theircomponentsviii.Electron microscopyix.Atomic forcemicroscopyx.Haemagglutinationxi.Measurement of viral enzymeactivity	03
4.4	Role of viruses in Cancer: Important definitions, characteristics of cancer cell, Human DNA tumor viruses- EBV, Kaposi's sarcoma virus, Hepatitis B and C virus, Papiloma Virus.	02
4.5	Prions: Definition, Examples of diseases caused by prions, Kuru, PrP protein and protein only hypothesis	01
4.6	Viroids	01
	 Text books: 1. PeterJ. Russell(2006), "IGenetics-A molecular approach", 2ndedition. PearsonInternational 2. Benjamin A. Pierce (2008), "Genetics a conceptual approach", 3rdedition, W. H.Freeman andcompany. 3.R. H. Tamarin, (2004), "Principles of genetics", Tata McGraw Hill. 4.M.Madigan,J.Martinko,J.Parkar,(2009), "Brock Biology of microorganisms", 12thedition, Pearson Education International. 5. Fairbanks and Anderson,(1999), "Genetics", WadsworthPublishing Company. 6. Prescott, Harley and Klein, "Microbiology", .7thedition McGraw Hill Internationaledition. 	


	7. Edward Wagner and
	MartinezHewlett,(2005)"BasicVirology",2 nd edition,
	BlackwellPublishing
	8. Teri Shors. (2009), "Understanding viruses", Jones and Bartlett publishers.
	9. S.Ignacimuthu, (2005), "BasicBioinformatics", Narosapublishing house.
	10. Robert Weaver,(2008),"Molecularbiology",3 rd edition, McGrawHill Internationaledition.
	11. Primrose and Twyman,(2001),"Principles of gene manipulationand
	genomics",6 edition, Blackwell Publishing
	12. Arthur Lesk,(2009),"Introduction to
	Bioinformatics", 3 rd edition, Oxford UniversityPress
	13. Snustad, Simmons, "Principles of genetics", 3 rd edition. John Wiley
C.	&sons,Inc.
	14. R.C. Dubey S. Chand. (2010) A textbook of biotechnology
	4 th edition.
L.	15. Pelczar, M., Reid, R. and Chan, E. (1986). Microbiology 5 th ed.New York: McGraw-Hill
ł	16. Willey, J. M., Sherwood, L., Wool verton, C. J., Prescott, L. M., & Willey, J. M. (2011). Prescott's microbiology 8 th ed. New York:
N	McGraw-Hill 17. Kindt, Goldsby, Osborne Kuby Immunology, 4 th and 6 th edition,WH
	Freeman and Company
	18.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4995773/pdf/nihms- 807292.pdf
	19. https://www.nature.com/articles/s41579-020-00468-6
	Reference books:
	1. Flint, Enquist, Racanillo and Skalka, "Principles of
	virology",2 nd edition. ASMpress.
	2. T.K. Attwood & D.J. Parry-Smith,(2003),"Introduction to bioinformatics",Pearsoneducation
	3. Benjamin Lewin, "GenesIX", (9 th edition), Jones andBartlett publishers.
	4. JD Watson, "Molecular biology of the gene", 5 th edition.

CourseCo de	Course Title: MEDICAL MICROBIOLOGY AND	2.5 Credits
SMIC602	IMMUNOLOGY PART-II	Lectures/Week 04
	 Learning Objectives : To study Vector borne, Sexually transmitted and CNS infection To understand the principles of Chemotherapy To learn the role of T and B cells in generating adaptive immustudy effector responses in both Humoral & Cell Mediated Imm To apply the concept of immunity to prevention of disease by vaccines To understand the concepts of immunohaematology, Hyperser autoimmunity 	unity and unity development of
	 Learning outcomes :On completion of the course the students will be able to: Comment on the different pathogens causing vector borne, sexually transmitted and CNS infections and the disease caused by them wrt transmission, pathogenesis and clinical manifestation, Lab diagnostic procedures and prophylactic measures. Describe the mode of action of antibiotics Understand the role of T and B cells in immunity Understand the principles and use of Vaccines Explain the basic principles of immunohaematology, Hypersensitivity and Autoimmunity. 	
	THEORY	(45 lectures)
Sub Unit	Unit – I: Study of vector borne, sexually transmitted and CNS infections:	15 lectures
	(Few Diseases with Emphasis on Characteristics of the Etiological Agent, Pathogenesis, Laboratory Diagnosis and Prevention only)	
1.1		03
1.1	Agent, Pathogenesis, Laboratory Diagnosis and Prevention only) Study of vector-borne infections-Malaria, Leptospirosis Study of sexually transmitted infectious diseases i. Syphilis	03 07
	Agent, Pathogenesis, Laboratory Diagnosis and Prevention only) Study of vector-borne infections-Malaria, Leptospirosis Study of sexually transmitted infectious diseases	

	i. Tetanus	
	ii. Polio	05
	iii. Meningococcalmeningitis	
	iv. Rabies	
Sub Unit	Unit II: Chemotherapy of Infectious Agents	15 lectures
	Attributes of an ideal chemotherapeutic agent-Selective toxicity,	
2.1	Bioavailability of drug routes of drugadministration, LD50, MBC, etc	02
2.2	Mode of action of antibiotics on-	
	 Cell wall (Beta- lactams- Penicillin andCephalosporins, Carbapenems,Vancomycin) 	07
10	ii. Cell Membrane (Polymyxin and Imidazole)iii. Protein Synthesis (Streptomycin, Tetracycline	
1	Chloramphenicol andErythromycin) iv. Nucleic acid (Quinolones, Nalidixic acid,Rifamycin)	
2.3	v. Enzyme inhibitors (Sulfa drugs, Trimethoprim) List of common antibiotics –used for treating viral, fungal and parasitic diseases.	01
2.4	Mechanisms of drug resistance- Its evolution, pathways and origin for ESBL, VRE,MRSA	03
2.5	 i. Methods for antimicrobial susceptibilitytesting-Kirby- Bauer method, E test, Vitek ii. Test for synergistic action of drugs- checkerboardassay. 	02
Sub Unit	Unit III: Immunology–I	15 Lectures
3.1	T cells	
	i. T Cell Receptor-structure (alpha-beta,gamma-deltaTCR)	
	TCR-CD ₃ complex-structure and functions. Accessory molecules	05
	ii. Development and maturation of T cells, Thymic Selectionof the	

Sub Unit	 i. Frinary and secondaryresponses ii. In vivo sites for induction of Humoralresponse iii. Germinal centres and antigen induced B cellDifferentiation a. Cellular events within germinalcentres-Overview b. Affinity maturation, somatic hyper-mutation and class switching c. Generation of plasma cells and memorycells Unit IV: Immunology – II Vaccines 	03 15 Lectures
	 ii. In vivo sites for induction of Humoralresponse iii. Germinal centres and antigen induced B cellDifferentiation a. Cellular events within germinalcentres-Overview b. Affinity maturation, somatic hyper-mutation and class switching 	03
3.4	Humoral Response i. Primary and secondaryresponses	
3.3	 B cell i. B cell receptor and co-receptor-structure andfunction ii. Development and maturation of Bcells iii. B cell activation andDifferentiation a. Thymus dependant and independentantigens b. Signal transduction pathway activated byBCR-overview c. Role of T_H cell in B cell response-Formation of T-B conjugates,CD40/CD40L interaction ,T_Hcellscytokine signals 	04
P	 i. General properties of effector Tcells ii. Cytotoxic T cells and destruction of target cell by perforin /granzyme pathway and Faspathway iii. Killing mechanism of NKcells iv. Antibody mediated cell cytotoxicity(ADCC) 	03
3.2	 iii. T –cellRepertoire iv. T cellactivation a. TCR mediated signaling –Overview b. Costimulatorysignals c. Superantigens induced Tcellactivation v. T cell differentiation (Memory and Effectorcells) 	

	Subunit vaccines(Toxoid vaccines, Polysaccharide	
	vaccines, Recombinant antigen vaccines), recombinant	
	vector vaccines, DNA vaccines	
	iii. Use of adjuvants invaccine	
	iv. New vaccine strategies (Dendritic cells and their use as vaccines)	
	v. Ideal vaccine	
	vi. Route of vaccine administration, Vaccinationschedule,	
	failures invaccination	
4.2	Immunohaematology	
F	i. Human blood group systems, ABO, secretors and non secretors, Bombay Blood Group, Rhesus system and list of	
	other blood groupsystems	03
	ii. Haemolytic disease of new born, Coombstest.	
11	iii. Blood Transfusion, Cross matching, Transfusionreactions	
4.3	Hypersensitivity	
	i. Coombs and Gells classification	04
	ii. Type 1 to Type 4 Hypersensitivity : Mechanism and	
	manifestation	
4.4		
4.4	Autoimmunity	02
	i. Definitions of autoimmunity, Immune toleranceand	02
	Immunesuppression	
	ii. Types of autoimmunediseases	
	iii. ProposedMechanisms	
	iv. Treatment	
	Text books:	
	 Jawetz, Melnick and Adelberg's MedicalMicrobiology, 26thedition, Langepublication 	
	2. Ananthanarayan and Panicker's, (2017) Textbook of Microbiology, 10 th edition, UniversitiesPress	
	3. Prescott, Harley and Klein,(2011)"Microbiology", 8 th edition,	

Course Code SMIC603	Course Title: MICROBIAL BIOCHEMISTRY PART II	2.5 Credits Lectures/Week 4
	 Learning Objectives : To study metabolism of lipids, fatty acids, nucleotides and amino acids To learn catabolism of proteins and aliphatic hydrocarbons To understand metabolic regulation and photosynthesis To learn metabolism of nitrate, sulphate and lithotrophy 	
F	 Learning Outcomes: On completion of this course the student will ▲ Have learnt about the degradation and biosynthesis of lipids, hydrocarbons, proteins and nucleicacids ▲ Be knowledgeable about inorganic metabolism, prokaryotic photosynthesis and metabolic regulation THEORY 	
Sub Unit	Unit – I: Lipid Metabolism & Catabolism of Hydrocarbons	15 Lectures
1.1	Introduction to Lipids	02
1.2	 i. Lipids –Definition, classification &functions ii. Types and role of fatty acids found inbacteria iii. Common phosphoglycerides inbacteria iv. Action of lipases on triglycerides/tripalmitate Catabolism of Fatty Acids and PHB i. Oxidation of saturated fatty acid by oxidation pathway ii. Energetics of oxidation ofPalmiticacid iii. Oxidation of propionyl CoA by acrylyl-CoA pathway and methyl citratepathway iv. PHB as a food reserve and itsdegradation 	05
1.3	Anabolism of Fatty Acids & Lipids	04
	 i. Biosynthesis of straight chain even carbonsaturated fatty acid (palmiticacid) ii. Biosynthesis of phosphoglycerides inbacteria 	

	iii. Biosynthesis of PHB	
1.4	Catabolism of aliphatic and aromatic hydrocarbons	04
	i. Organisms degrading aliphatichydrocarbons	
	ii. Hydrocarbon uptakemechanisms	
	iii. Omega oxidationpathway-	
	a. Pathway in <i>Corynebacterium</i> and yeast	
	b. Pathway in <i>Pseudomonas</i> -Composition and	
	architecture of membrane	
	iv. Growth with aromatic compounds ortho and meta	
1.44	cleavage	
Sub Unit	Unit II: Metabolism of Proteins and Nucleic Acids	15 Lectures
2.1	Protein/ amino acid catabolism	06
- 01	i. Enzymatic degradation of proteins	
- 11	ii. General reactions of amino acids catalyzedby	
	a. Amino aciddecarboxylases	
- 13	b. Amino aciddeaminases	
	c. Amino acidtransaminases	
	d. Amino acidracemases	
	iii. Metabolic fate of amino acids – Glucogenic andketogenic	
	aminoacids	
	iv. Fermentation of single amino acid - Glutamic acidby	
	Clostridium tetanomorphum	
	v. Fermentation of pair of amino acids –Sticklandreaction	
2.2	Anabolism of amino acids	02
	 i. Schematic representation of amino acidfamilies ii. Biosynthesis of aminoacids of Serine family(Serine,Glycine andCysteine) 	
2.3	Catabolism of Nucleotides	03
	iii. Degradation of purine nucleotides up to uric acidformationiv. Salvage pathway for purine and pyrimidinenucleotides	

2.4	Biosynthesis of nucleotides	04
	i. Nomenclature and structure of nucleotides	
	ii. Role of nucleotides (high energytriphosphates)	
	iii. Biosynthesis of pyrimidinenucleotides	
	iv. Biosynthesis of purinenucleotides	
	v. Biosynthesis of deoxyribonucleotides	
Sub Unit	Unit III: Metabolic Regulation	15 Lectures
3.1	Definition of terms and major modes of regulation	02
3.2	Regulation of enzyme activity	05
1.04	i. Non covalent enzymeinhibition	
	a. Allosteric enzymes and feedbackinhibition	
	b. Patterns of FBI, combined activation and inhibition	
	ii. Covalent modification of enzymes	
	a. Monocycliccascades b. Examples of equalent modification (withoutstructures)	
	b. Examples of covalent modification (withoutstructures)c. Regulation of Glutaminesynthetase	
- 11	e. Regulation of Gradannie synthetase	
3.3	 DNA binding proteins and regulation of transcription by positive & negative control DNA bindingproteins Negative control of transcription: Repression and Induction <i>iii.</i> Positive control of transcription: Maltose catabolism in <i>E.coli</i> 	04
3.4	Global regulatory mechanisms	02
	i. Global control & cataboliterepression	-
	ii. Stringentresponse	
3.5	Regulation of EMP and TCA cycle- (Schematic and Regulation of Pyruvate dehydrogenase Complex)	02
Sub Unit	Unit IV: Prokaryotic Photosynthesis & Inorganic Metabolism	15 Lectures
4.1	Photosynthesis	04
	i. Definition of terms in photosynthesis (light and dark reactions,	
	Hill reaction and reagents, Photophosphorylation)	

	ii. Photosyntheticpigments	
	iii. Location of photochemicalapparatus	
	iv. Photochemical generation of reductant	
4.2	Light reactions in:	03
	i. Purple photosynthetic bacteria	
	Green Sulphurbacteria	
	ii. Cyanobacteria (withdetails)	
4.3	Dark reaction	02
	i. Calvin Bensoncycle	
10	ii. Reductive TCAcycle	
4.4	Inorganic Metabolism	
	i. Assimilatorypathways:	03
- 01	a. Assimilation of nitrate	
1.1	b. Ammonia fixation –Glutamate dehydrogenase, Glutamine	
1	synthetase	
	c. GS-GOGAT, Carbamoyl phosphatesynthetase	
	d. Biological nitrogen fixation (Mechanism for N_2 fixationand	
	protection of nitrogenase)	
	e. Assimilation of sulphate	02
	and the second states of the first	
	ii. Dissimilatorypathways:	
	a. Nitrate as an electron acceptor (Denitrification in <i>Paracoccus</i>	
	denitrificans)	01
	b. Sulphate as an electron acceptor	
	iii. Lithotrophy – Enlist organisms and products formedduring	
	oxidation of Hydrogen, carbon monoxide, ammonia, nitrite,	
	sulphur,Iron	
	Textbooks:	
	1.Stanier, R.Y., M. Doudoroff and E.A.Adelberg (1988) General	

Microbiology, 5thedition, The Macmillan press Ltd. 2. Conn, E.E., P.K. Stumpf, G.Bruening and R.Y. Doi. (1987). Outlines of Biochemistry,5thedition .John Wiley & Sons.NewYork. 3. Gottschalk, G., (1985), Bacterial Metabolism, 2ndedition, Springer Verlag 4. White, D., (1995), The Physiology and Biochemistry of Prokaryotes, 3rdedition, Oxford UniversityPress 5. Nelson, D.L. and M. M. Cox (2005), Lehninger, Principles of biochemistry,4thedition,W. H. Freeman and Company. 6. G.Moat, J.W.Foster, M, P.Spector. (2002), Microbial Physiology, 4thedition, WILEY-LISS 7. Madigan, M.T and J.M. Martinko (2006). Brock Biology of Microorganisms.11thedition, Pearson PrenticeHall. **Reference books:** 1. Zubay, G.L(1996), Biochemistry, 4thedition, Wm. C.Brown publishers 2. D. Nelson and M. Cox (2008) Lehninger, Principles of Biochemistry, 5thedition, W. H. Freeman and Company

Course Title: BIOPROCESS TECHNOLOGY: PART-II ningObjectives To understand processes involved in fermentation of important products To gain knowledge of plant and animal tissue culture techniques To understand the salient features of quality management and regulatory procedures To understand working of instruments used in biochemical analysis ning Outcomes: On completion of this course the student will Have understood the techniques used in animal and plant tissue , stem cells and their application and enzyme immobilization	Lectures/Week: 4
To understand processes involved in fermentation of important products To gain knowledge of plant and animal tissue culture techniques To understand the salient features of quality management and regulatory procedures To understand working of instruments used in biochemical analysis ning Outcomes: On completion of this course the student will Have understood the techniques used in animal and plant tissue , stem cells and their application and enzyme immobilization	
Have understood the techniques used in animal and plant tissue , stem cells and their application and enzyme immobilization	
Get an insight into the basics of Pharmaceutical microbiology Know the principles and applications of Spectrophotometry, Flame photometry, Spectrofluorimetry and radioisotopes Have learnt the fermentation processes of some important fermentation products	
THEORY	
Unit – I: Advances in Bioprocess Technology	15 Lectures
nal Tissue Culture Types of tissue culture and celllinesApplications of tissuecultureAdvantages andLimitationsEquipmentsusedTissue culturemediaProtocols for routine characterization of cell lines (Viable cell	05
count using haemocytometer, flow cytometry (use of7-AAD)	05
	Protocols for routine characterization of cell lines (Viable cell

	 ii. Culturing Stem Cells: Human ES , Human EG and HumanEC (planar cultures, hollow fiber cultures, feeder layercultures) iii. Applications: Therapeutic Cloning (allogenic, autologous–examples Osteoarthritis, Chroniculcers) 	
1.3	 Plant tissue culture i. Introduction ii. Requirements for in vitro culture, Methods of plant cellsand tissueculture iii. Types of cultures of plant materials: explants, callus, organogenesis, root culture, shoot culture, micropropogation, suspension culture, protoplast culture, protoplast fusion and somatichybridization. iv. Application : production of disease resistant plants, production of virus free plant, In vitro selection of cell lines for disease resistance, micropropogation, secondary metabolites from cell culture, transgenic plants for crop improvement 	05
Sub Unit	Unit II: Pharmaceutical Microbiology	15 Lectures
2.1	Vaccine Preparation	03
2.2	 Quality assurance and quality control Definitions, Chemical and pharmaceuticalproducts Variables of batchprocess Q.A and Q.C wrt Raw materials ,method of manufacturing,in process items, finished products, label and labeling, packaging materials Control of microbial contamination duringmanufacturing 	07
2.3	Sterilization control and assurance	02
2.4	Bioassay i. Introduction ii. Types: Diffusion, End Point, Turbidometric, Metabolic Response, Enzymatic	03
Sub Unit	Unit III: Instrumentation, IPR and Bio-Entrepreneurship	15 Lectures

3.1	Instrumentation: Principles, working and application of	
	i. IR Spectrophotometry	
	ii. AAS &AES (Flamephotometry)	05
	iii. Spectroflourimetry	
	iv. RadioisotopicMethods	
3.2	Intellectual Property Rights	04
Ē	 i. Intellectual Property Rights (IPR) and Intellectual Property Protection(IPP) ii. Rationale of Patents in Research and Scientificinnovations iii. Requirements forPatentability iv. Categories of Biotechnological patents- process and products (Discuss with examples of patents granted) v. Steps involved inpatenting vi. BioethicalConflicts 	
3.3	Bioentrepreneurship	
	 i. Bioentrepreneurship-Definition andNeed ii. Requirements to set a Start–Up iii. IndianScenario iv. Case studies of successful bioentrepreneurs 	02
3.3	Immobilized enzyme and cells	
	 i. Introduction andDefinitions ii. Methods iii. Immobilized EnzymeReactors iv. Applications 	04
Sub Unit	Unit IV: Industrial Fermentations	15 Lectures
4.1	Penicillin and semisynthetic penicillins:	03
	Introduction, biosynthesis and regulation, strain development, productionmethods.	
	Semisynthetic penicillins: Examples, production, advantages	
4.2	Aminoglycoside:	03
	Streptomycin: Aminoglycoside antibiotics, biosynthesis, regulation of biosynthesis, strain development, production method, recovery.	
4.3	Vitamin B ₁₂ :	02
	Occurrence and economic significance, structure, biosynthesis,	

	production based on media containing carbohydrates by- <i>Propionibacteria</i> and <i>Pseudomonas</i> Recovery.	
4.4	Citric acid: Introduction, strains used for production, biosynthesis, nutrient media, production processes- surface and submerged, product recovery.	03
4.5	Glutamic acid: Production strains, biosynthesis, effect of permeability on production, conditions of manufacturing, production process and recovery.	02
4.6	Steriod Transformation	02
	 Casida L.E., (2009)"Industrial Microbiology" Reprint, New Age International(P)Ltd, Publishers, NewDelhi. StanburyP. F., Whitaker A. &HallS. J., (1997), "Principles of Fer m en t a t i on Technology",² Edition, Aditya Books Pvt.Ltd, New Delhi. Stanbury P.F., Whitaker A. &Hall S.J (2017)"Principles of Fermentation Technology"^{3rd}edition H. K. Das., "Text book of Biotechnology", 2ndand3rdedition. R.C. Dubey S. Chand. (2010) A textbook of biotechnology 	
	 4thedition. 6. H.A.Modi,(2009). "FermentationTechnology" Vol.1&2,Pointer Publications,India 7. Okafor Nduka (2007) "Modern Industrial Microbiologyand Biotechnology", Science Publications Enfield, NH,USA. 8. Crueger W. and Crueger A. (2000)"Biotechnology -"A Textbookof Industrial Microbiology", ²Edition, Panima Publishing Corporation, NewDelhi. 10. Prescott and Dunn's (1982) "Industrial Microbiology" 4thedition, McMillanPublishers. 11. Veera kumara L. "Bioinstrumentation", MJPPublisher 	
	12. Hugo and Russell PharmaceuticalMicrobiology,7 th edition,	

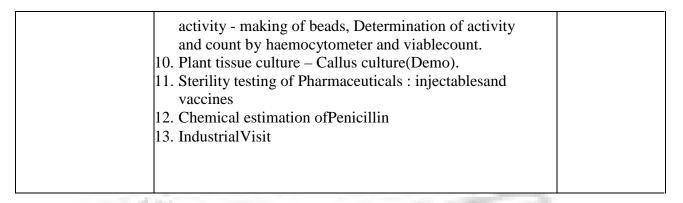
Blackwell Science.

Reference books

1. Peppler,H.J. and Perlman, D.(1979), "MicrobialTechnology".Vol1&2, AcademicPress.

2. Williams, Bryan L; Wilson, 2ndedition." A Biologist's guide t o principles and techniques of practical biochemistry"Baltimore: University Park Press,1981.

3. Wilson, Keith, 1936-; Goulding, Kenneth H, A Biologist's guideto principles and techniques of practical biochemistry 3rdedition., "London;Baltimore:E.Arnold,1986.


4. Wilson and Walker,(2008)"Principles and techniques of practical biochemistry"5thedition. New Delhi, Cambridge UniversityPress.

Course Code PRACTICAL – I 3 Credits SMIC6PR1 Learning Objectives: Develop soft skills To learn the practical aspects of immunohaematology and antibiotic sensitivity testing Enrichment of coliphages, phage assay (pilot &proper). Restriction digestion of lambda phage /any plasmidDNA 2. 3. Isolation and detection and plasmid DNA byalkaline lysis method 4. Beta galactosidaseassay 5. Bioinformaticspracticals **On Line Practical** Visiting NCBI and EMBL websites & list services i. available, software tools available and databases maintained ii. Visiting & exploring various databases mentioned in syllabusand Using BLAST and FASTA for sequenceanalysis b. Fish out homologs for given specific sequences (by teacher - decide sequence of some relevance to their syllabus and related to some biological problem e.g. evolution of some specific protein in bacteria, predicting function of an unknown protein from a new organism based on itshomology) Six frame translation of given nucleotidesequence c. d. Restriction analysis of given nucleotidesequence

Semester VI – Practical

	e. Pair-wise alignment and multiple alignment of agiven proteinsequences
	f. Formation of phylogenetictree
	6. Animal cell culture(Demo)
	7. Demonstration of malarial parasite in bloodfilms (Demo)
	 Selection and testing of antibiotics using the Kirby-Bauer method
	9. Susceptibility testing for antifungalagents
	10. Determination of MBC of anantibiotic
0	11. E test
	12.Blood grouping – Direct & Reversetyping
1.1	13. Determination of Isoagglutinintiter
	14. Coomb's Directtest
- 146	15. Blood Transfusion : CompatibilityTest
19	16. Demonstration experiments - VDRL, Rheumatoid Arthritistest
13	17. Western Blot:Demo
Course Code SMIC6PR2	PRACTICAL – II 3 Credits
	LearningObjectives: To learn estimations of biologically activecompound Learning the principles and estimations of biocompounds
	 Detection of PHB producingbacteria To study catabolite repression by diauxic growthcurve. Protein estimation by Lowry'smethod Estimation of uricacid Enrichment and isolation of Phenoldegraders Estimation of Phenol
	 Bioassay of an antibiotic (Ampicillin /Penicillin) Bioassay ofCyanocobalamin. Perform immobilization of yeastcells forinvertase

Examination		Time Duration	Marks
A. EVALUATION SCHEME FO	R THEORY COURSES ((4 PAPERS)	
I. Continuous Assessment			40
(C.A.)			
C.A.I Test	MCQ, 1M answers etc	40 mins	20
C.A.II Test	Assignment/Project /Posters/ Presentations etc		20
II. Semester End Examination (SEE)		2 hours	60
Each Theory Paper			40+60= 10

EVALUATION SCHEME:

		/
Semester End Practical Examination		
II. For Each Practical course		100
Practical Course		200
SMIC6PR1 + SMIC6PR2		200
(2 courses)		