

JAI HIND COLLEGE BASANTSING INSTITUTE OF SCIENCE &

J.T.LALVANI COLLEGE OF COMMERCE (AUTONOMOUS) "A" Road, Churchgate, Mumbai - 400 020, India.

Affiliated to University of Mumbai

Program : B.Sc.

Proposed Subject: Mathematics

Semester IV

Credit Based Semester and Grading System (CBGS) with effect from the academic year 2020-21

S.Y.B. Sc. Mathematics Syllabus

Academic year 2020-2021

Semester IV			
Course Code	Course Title	Credits	Lectures /Week
SMAT401	Calculus-IV	3	3
SMAT402, AMAT401	Linear Algebra-II	3	3
SMAT403, AMAT402	Data Analytics-II	3	3
SMAT4PR	Practical (Based on SMAT401,402, 403)	6	5
AMAT4PR	Practical (Based on AMAT401,402)	4	2

Semester IV – Theory

and real world pr of their mathema that students be mathematical mo effective strategie Course Learning	burse is to help students develop effective strategies for solving both roblems. Although students often do not like "word problems" probing tical skills, it is very important that instructors emphasize these types of come experts at them. In particular, students should be taught he dels, develop es for solving problems in applied settings and non- routine situations. g Outcomes pre-requisite for multi-variable and Metric Spaces. Mastery of this coup proved reading, writing, thinking, and problem solving skills. Students sl o understand, visualize, categorize, model, and solve complicated calculus	g applications of problems so ow to create urse would be hould have an problems.
and real world pr of their mathema that students be mathematical mo effective strategie Course Learning	roblems. Although students often do not like "word problems" probing tical skills, it is very important that instructors emphasize these types of come experts at them. In particular, students should be taught he odels, develop es for solving problems in applied settings and non- routine situations. g Outcomes pre-requisite for multi-variable and Metric Spaces. Mastery of this coup proved reading, writing, thinking, and problem solving skills. Students sho o understand, visualize, categorize, model, and solve complicated calculus	g applications of problems so ow to create urse would be hould have an problems.
and real world pr of their mathema that students be mathematical mo effective strategie Course Learning	roblems. Although students often do not like "word problems" probing tical skills, it is very important that instructors emphasize these types of come experts at them. In particular, students should be taught he odels, develop es for solving problems in applied settings and non- routine situations. g Outcomes pre-requisite for multi-variable and Metric Spaces. Mastery of this coup proved reading, writing, thinking, and problem solving skills. Students sho o understand, visualize, categorize, model, and solve complicated calculus	g applications of problems so ow to create urse would be hould have an problems.
of their mathema that students be mathematical mo effective strategie Course Learnin	tical skills, it is very important that instructors emphasize these types of come experts at them. In particular, students should be taught he dels, develop es for solving problems in applied settings and non- routine situations. g Outcomes pre-requisite for multi-variable and Metric Spaces. Mastery of this couproved reading, writing, thinking, and problem solving skills. Students should reading, visualize, categorize, model, and solve complicated calculus	of problems so ow to create urse would be hould have an problems.
that students be mathematical mo effective strategie Course Learning	come experts at them. In particular, students should be taught he odels, develop es for solving problems in applied settings and non- routine situations. g Outcomes pre-requisite for multi-variable and Metric Spaces. Mastery of this couproved reading, writing, thinking, and problem solving skills. Students should reading, visualize, categorize, model, and solve complicated calculus	ow to create urse would be hould have an problems.
mathematical mo effective strategie Course Learning	bdels, develop es for solving problems in applied settings and non- routine situations. g Outcomes pre-requisite for multi-variable and Metric Spaces. Mastery of this couproved reading, writing, thinking, and problem solving skills. Students sl o understand, visualize, categorize, model, and solve complicated calculus	urse would b hould have an problems.
effective strategie Course Learning	es for solving problems in applied settings and non- routine situations. g Outcomes pre-requisite for multi-variable and Metric Spaces. Mastery of this couproved reading, writing, thinking, and problem solving skills. Students slo o understand, visualize, categorize, model, and solve complicated calculus	hould have an problems.
Course Learning	g Outcomes pre-requisite for multi-variable and Metric Spaces. Mastery of this couproved reading, writing, thinking, and problem solving skills. Students sho understand, visualize, categorize, model, and solve complicated calculus	hould have an problems.
	pre-requisite for multi-variable and Metric Spaces. Mastery of this couproved reading, writing, thinking, and problem solving skills. Students slo understand, visualize, categorize, model, and solve complicated calculus	hould have an problems.
This course is a	proved reading, writing, thinking, and problem solving skills. Students slo o understand, visualize, categorize, model, and solve complicated calculus	hould have an problems.
	proved reading, writing, thinking, and problem solving skills. Students slo o understand, visualize, categorize, model, and solve complicated calculus	hould have an problems.
manifested in imr	o understand, visualize, categorize, model, and solve complicated calculus	problems.
, -		
Unit I	Riemann Integral	15 L
		15 12
	(a) Definition of the RiemannIntegral	
	(b) The Cauchy criterion for integrability	
	(c) Integrability of continuous and monotonic functions	
	(d) Properties of Riemann Integral	
	(e) The Fundamental theorem of Calculus	
	(f) Mean value theorems of Integral Calculus	
Unit II	Applications of Riemann Integral	15 L
	Applications of Alemann Integra	15 L
	(a) Integration by parts	
	(b) Area of a region between curves	
	(c) Volume using cross sections and using Cylindrical shells	
	(d) Arc length of a curve and Area of surfaces of revolution	
	(e) Quadrature Rule	
Unit III	Improper Integral	15 L
	(a) Definition of improper integral	
	(b) Absolute and conditional convergent of improper integral	
	(c) Integral test for convergence of series(d) Beta and Gammafunctions	

References:

- Sudhir R. Ghorpade, Balmohan V. Limaye, A Course in Calculus and Real Analysis, Springer.
- George B. Thomas, Maurice Weir, and Joel Hass, Calculus, 13th Edition 2014
- http://www.maths.sci.ku.ac.th/suchai/417167/thomas.pdf

Additional References:

- R. R. Goldberg, Methods of real analysis, Oxford & I. B. H. Publications, 1970
- T. Apostol. Calculus, Vol. 2 (Second Edition), John Wiley.
- Robert, G. Bartle, Donald Sherbert Introduction to real analysis, Third edition, John Wiley and Sons
- Ajit Kumar and S.Kumaresan, A Basic Course in Real Analysis, CRC Press, Second Indian Reprint 2015
- Howard Anton, Calculus A new Horizon, Sixth Edition, John Wiley and Sons Inc, 1999

Course:	Linear Algebra-II (No. of Credit: 3, No. of Lectures / week : 3)
SMAT402,	
AMAT401	

Course Learning Objectives:

This Course is part of algebra and is studied in all applied and pure mathematics courses. Basic Knowledge of set theory and multivariable function is helpful for learning the course. This course can be extended from fields to Rings in higher classes. The course has application in face detection software's and mathematical modelling

Course Learning Outcomes:

To equip students with knowledge of eigen values and eigen vectors which is applied everywhere in all sciences. To increase the computational ability of students and help them to relate application of mathematics in real situations.

Ľ.

- 11

Unit I	Inner Product Spaces	15 L
	 Definition and examples Norm of a vector in an inner product space and distance and angle between two vectors. Cauchy-Schwarz inequality, Triangle inequality, Orthogonality of vectors, Pythagoras theorem and geometric applications in R² Projections on a line, the projection being the closest approximation Orthogonal complements of a subspace, Gram-Schmidt orthogonalization process, orthogonal transformation. 	
Unit II	Eigenvalues and eigenvectors	15 L
	A REAL ROUGHT / 15/	
	Definition and examples, Eigen spaces. Characteristic as how emission of our (new) matrix	
	 Characteristic polynomial of an (n×n) matrix. Carden Herritten theorem and its areliastions. 	
	 Cayley-Hamilton theorem and its applications. Similar metrices and their relationship with change of basis 	
	• Similar matrices and their relationship with change of basis.	
	• Every square matrix is similar to an upper triangular matrix.	
Unit III	Diagonalization and orthogonal diagonalization	15 L
	• Diagonalizable matrices, algebraic and geometric multiplicity of an	
	eigenvalue of an $(n \times n)$ real matrix,	
	Equivalent conditions regarding diagonalizable matrices,	
	• Orthogonal diagonalization of an (n×n) real symmetric matrix,	
	Application to real quadratic forms.	
	Characterization of positive definite matrices.	

References:

- Contemporary abstract algebra by Joseph A. Gallian , 4th edition, Narosa
- Abstract Algebra by Dummit and Foote, Wiley India Pvt. Ltd.

Additional References:

- Basic abstract algebra by Bhattacharya, Jain, Nagpaul, 2nd edition, Cambridge University Press
- A first course in abstract algebra by J.B.Fraleigh, Narosa

Course: SMAT403, SMAT402	Data Analytics-II (No. of Credit: 3, No. of Lectures / week : 3)	
	arning Objectives:	
This course	e is in continuation with semester III and is based on application of central limit theorem	l.
Various hy	pothesis test is covered to bring an ease to the concept sampling techniques. Areas like s	simple
and multip	le regression with applications like prediction will be covered. Last unit is the introducti	on of
machine le	arning which is continued in final year. This course is widely applied in data analysis.	
Course Le	arning Outcomes:	
mathematic machine le	students comfortable with data analysis in quantitative research. To enhance the sk cal modelling. To create interest in statistical mathematics. To motivate students to earning and data analytics. To equip students with required knowledge for higher studi- tion in applied mathematics.	owards
Unit I	Testing of Statistical Hypothesis	15 L
	• Statistics and parameters, statistical inference: problem of estimation and testing	
	of hypothesis. Estimator and estimate. Unbiased estimator (definition and	
	illustrations only). Statistical hypothesis, null and alternative hypothesis, one	
	sided and two-sided alternative hypothesis, critical region, type I error, type II	
	error, level of significance, p-value. Confidence interval.	
	Tests for mean using critical region approach	
	• Central limit theorem (using critical region approach and p value approach)	
	Tests for proportion	
	• Chi-square and Student's t-distribution, Snedecore's F- distribution	
Unit II	Learning-Standard Linear and non-Linear methods	15 L
	• Statistical Learning: Assessing Model Accuracy. Linear Regression: Simple	
	Linear Regression, Multiple Linear Regressions, Other Considerations in the	
	Regression Model, Comparison of Linear Regression with K-Nearest	
	Neighbour's. LogisticRegression.	
	• Non-Linear Learning methods: Polynomial Regression, Step Functions, Basis	
	Functions, Regression Splines, Smoothing Splines, Local Regression	

Unit III	Supervised and Unsupervised Learning	15 L	
	• Challenges, Fraud detection, Distance based Algorithm: K nearest Neighbours		
	and kD-Trees.		
	• Rules-Based Classifiers: Rule Sets, Rule Lists, Constructing Rules- based		
	Classifiers: 1R; PRISM; RIPPER.		
	• Trees Classifiers: Tree Learning Algorithm, Attribute Splitting Decisions:		
	Random, Purity Count, Entropy (ID3), Information Gain Ratio, pruning Pre- and		
	Post-Pruning; C4.5's error estimation, From Trees to Rules.		
	• Statistical based classifiers: Bayesian classification, Bayesian Networks.		
Referenc	es:	1	
	A. M., Gupta, M. K. and Dasgupta, B. (1983). Fundamentals of Statistics, Vol. 1, I Edition, The World Press Pvt. Ltd., Calcutta	Sixth	
Goon A Kolkata	M., Gupta, M. K. and Dasgupta, B. (1986), Fundamentals of Statistics, Vol. 2, World F	Press,	
-	S. C. and Kapoor, V. K. (2002), Fundamentals of Mathematical Statistics, (Eleventh Edi Chand and Sons, 23, Daryaganj, New Delhi , 110002.	tion),	
Chand a	S. C. and Kapoor V. K. (2007), Fundamentals of Applied Statistics (Fourth Edition), S and Sons, New Delhi.	ultan	
• Dunhan	n, Margaret H, Data Mining: Introductory and Advanced Topics, Prentice Hall.		
	Ian and Eibe Frank, Data Mining: Practical Machine Learning Tools and Techniques, Se , Morgan Kaufmann.	econd	
Additional	References:		
• Gupta,	S. P. (2002), Statistical Methods (Thirty First Edition), Sultan Chand and Sons	, 23,	
Daryaga	anj, New Delhi 110002.		
• Hogg, I	• Hogg, R. V. and Craig, A. T., Mckean J. W. (2012), Introduction to Mathematical Statistics		
(Tenth]	(Tenth Impression), Pearson Prentice Hall.		
• Han and	d Kamber (2006), Data Mining: Concepts and Techniques, Second Edition, Morgan		
Kaufma	nn		
• Berry, E	Browne(2006), Lecture Notes in Data Mining, World Scientific.		

Semester IV – Practical

Course: SMAT4PR	Practical (Based on SMAT 401, 402 and 403) (Credits 6 : Practical /Week: 5)
Course: AMAT4PR	Practical (Based on AMAT401 and 402) (Credits 4 : Practical /Week: 2)

Problems based on SMAT401

- Problems on Riemann integral.
- Problems on fundamental theorem of calculus, mean value theorems
- Integration by parts . Find area of a region between curves, volume using cross sections and using Cylindrical shells
- Find the arc length of a curve and area of surfaces of revolution
- Approximation of definite integrals using quadrature Rule
- Example on improper integral, Beta and Gamma functions

Problems based on SMAT402/AMAT401

- Examples of Inner product spaces and to find length and angle.
- Gram-Schimdt process to obtain an orthogonal set from a given set.
- Problems based on Cayley-Hamilton theorem
- Finding eigenvalues and eigenvectors.
- Diagonalization of a matrix
- Orthogonal diagonalization and quadratic forms

Problems based on SMAT403/AMAT402

- Diagrammatic representation of statistical data: simple and subdivided bar diagrams, multiple bar diagram, percentage bar diagram, pie diagram
- Graphical representation of statistical data: histogram, frequency curve and ogive curves. Determination of mode and median graphically
- Computation of measures of central tendency and dispersion (grouped data)
- Fitting of binomial distribution and computation of expected frequencies
- Fitting of binomial distribution and computation of expected frequencies
- Fitting of Poisson distribution and computation of expected frequencies.
- Fitting of normal and exponential distributions, plot of observed and expected frequencies

Evaluation Scheme

Evaluation Scheme for Theory courses

I. Continuous Assessment (C.A.)- 40 % - 40 Marks

144

۰.

Sr. No.	Evaluation type	Marks
1.	C.AI : It will be conducted either using any open source learning management system or by taking a test	20
2.	C.AII : Assignments / Project (maximum 5 students in a group)	20

II. Semester End Examination (SEE) - 60 % - 60 Mark , Duration 2 Hrs

Theory Question Paper Pattern:-

Question	Options	Based on	Marks
1.	Any 3 out of 5	Unit I	15
2.	Any 3 out of 5	Unit II	15
3.	Any 3 out of 5	Unit III	15
4.	Any 3 out of 5	Unit IV	15

Evaluation scheme for Practical courses- 150 / 100 Marks

N Mar Each student will maintain a Journal. After every practical, student will upload his practical in the form of documents along with the screen shots of output on any LMS. A MARK 1 1000

Sr. No.	Heading	Marks
1.	Journal	15
2.	Practical (Based on SMAT401, SMAT 402 and SMAT 403)	120
3.	Viva	15
	Total	150

Sr. No.	Heading	Marks
1.	Journal	10
2.	Practical (Based on AMAT401, AMAT 402)	80
3.	Viva	10
	Total	
