

JAI HIND COLLEGE BASANTSING INSTITUTE OF SCIENCE &

J.T.LALVANI COLLEGE OF COMMERCE (AUTONOMOUS) "A" Road, Churchgate, Mumbai - 400 020, India.

Affiliated to University of Mumbai

Program: B.Sc

Proposed Course: Microbiology

Semester II

Credit Based Semester and Grading System (CBGS) with effect from the academic year 2020-21

F.Y.B.Sc. Microbiology Syllabus

Academic year 2020-2021

Semester II			
Course Code	Course Title	Credits	Lectures /Week
SMIC 201	Microbial Diversity	2	3
Unit I	Study of Different Groups of Microbes-I		
Unit II	Study of Different Groups of Microbes-II	1	1
Unit III	Microbial growth		
SMIC 202	Exploring Microbiology	2	3
Unit I	Tools of the Laboratory		1.00
Unit II	Microbial Interactions		100
Unit III	Microbe-Human Interactions: Infection and Disease	N.	201
SMIC2PR		2	6

Course Code SMIC201	Course Title: MICROBIAL DIVERSITY Lectures/Week : 03	2 Credits
P	 Learning Objectives ➢ Open minds to the diversity of microbes in nature and to study importance ➢ Use various methods to study growth of micro-organisms ➢ Learn how various environmental factors affect the growth of organisms 	
P	Learning Outcomes: On completion of this course students will learn about various groups microorganisms, their structure, physiology and growth characteristic	
Unit – I	Study of Different Groups of Microbes-I	15 lectures
1.	 Viruses – a. Early developments of Virology, General properties of viruses, prions, viroids b. Structure of Viruses : Capsids, envelopes, genomes, c. Cultivation of Viruses : an overview d. Bacteriophages: Lytic cycle, Lysogeny, Structure and Life cycle of the T4 Bacteriophage 	07
2.	Rickettsia, Coxiella, Chlamydia, Mycoplasma General features and medical significance	03
3.	Actinomycetes General Characteristics, Cell Wall types and importance	02
4.	Archaebacteria Characteristics of major archaeal groups	02
5.	Cyanobacteria	01
Unit – II	Study of Different Groups of Microbes-II	15 lectures
1.	Protozoa a. Ecology and Morphology of Protozoa b. Major categories of Protozoa based on motility, reproduction c. Medical importance of Protozoa d. Life cycle of Entamoebahistolitica	05
2	Algae Characteristics of algae: morphology, pigment, reproduction	04

Semester II – Theory

	 a. Cultivation of algae b. Major groups of algae : an overview c. Biological and economic importance of algae d. Lichen symbiosis e. Differences between Algae and Cyanobacteria 	
3.	Fungi a. Characteristics: structure, reproduction b. Cultivation of fungi c. Major fungal divisions : an overview d. Life cycle of yeast e. Biological and economic importance	05
4.	Slime Molds	01
\ Unit – III	Microbial growth	15 lectures
1.	Definition of growth, Growth curve, Mathematics of growth	03
2.	Measurement of microbial growth a. Direct microscopic count :Breed's Petroff – Hausser counting chamber, Haemocytometer, Coulter Counter, b. Viable count : Spread plate and Pour plate technique c. Measurements of cell constituents. d. d. Turbidity measurements : Nephelometer and spectrophotometer techniques	05
3.	Synchronous growth, Continuous growth (Chemostat and Turbidostat)	01
4.	Influence of environmental factors on growth.	04
5.	Microbial growth in natural environment, Biofilms, Quorum sensing techniques.	02
CA	 Test Assignment/ Poster making 	

References:	1. Willey, J. M., Sherwood, L. & Woolverton, C. J. (2011).
	Prescott, Harley and Klein's Microbiology7 th ed. New York:
	McGraw-Hill
	2. Pelczar, M., Reid, R. and Chan, E. (1986). <i>Microbiology</i> 5 th ed.
	New York: McGraw-Hill
	3. Madigan, M. T., Martinko, J. M. (2009). Brock biology of
	microorganisms 12 th ed. Upper Saddle River, NJ: Prentice
	Hall/Pearson Education
	4. Bauman, R. W., Machunis-Masuoka, E., & Montgomery, J. E.
	(2015). Microbiology: With diseases by body system 4 th ed.
	Boston: Benjamin Cummings
	5. Willey, J. M., Sherwood, L., Woolverton, C. J., Prescott, L.
	M., & Willey, J. M. (2011). Prescott's microbiology 8thed. New
100	York: McGraw-Hill.

Course Code SMC202	Course Title: EXPLORING MICROBIOLOGY Lectures/Week:03	2 Credits
	Learning Objectives	<u> </u>
	 Learn and understand the principle and applications of electro fluorescent microscopes. Acquire competency in using Colorimeter and Spectrophoton Understand the concept of using buffers and to determine the using indicators and a pH meter Have basic knowledge in preparing solutions of different type Enlist different types of microbial interactions and study the human health 	neter. pH of a solution es
1	Learning Outcomes: On completion of this course students will be able to understand the interactions and impact of microorganisms on human health. They we skills in the use of basic instruments common to a biologist.	
Unit I	Tools of the Laboratory	15 lectures
1.	 Advances in Microscopy a. Electron Microscopy: Construction, Principle & Application i. The Transmission Electron Microscope ii. The Scanning Electron Microscope iii. Specimen preparation in TEM: Staining, Shadowing with metals, Freeze Etching b. Confocal Microscopy: Construction, Principle & Application c. Fluorescence Microscopy: Construction, Principle & Application 	07
2.	 Colorimetry& Spectrophotometry a. Instrument construction, b. Principle- Beer and Lambert's Law, c. UV-Vis Spectrophotometer d. Application 	04
3.	 pH, Buffers & Solutions a. Concept of pH b. Ion product of pKa & pKb 	04

	c. Henderseon & Hasselbalch Equation	
	d. Buffers	
	e. Buffer capacity	
	f. Physiological buffers (Bicarbonate, Phosphate and protein buffers)	
	g. Determination of pH using indicator & pH meter	
	h. Construction, Principle and Working of pH meter	
	i. Solutions: Concepts of %. mg/l, ppm, w/w, w/v solutions	
	j. Problems based on the above	
Unit – II	Microbial Interactions	15 lectures
1.	Types of Microbial Interactions:	07
	a. Mutualism	
	b. Cooperationc. Commensalism	1
	d. Predation	
- 1	e. Parasitism	
1	f. Amensalism	
1	g. Competition	
2.	Microbial associations with vascular plants a. Phyllosphere	08
	b. Rhizosphere&Rhizoplane	
	c. Mycorrhizae	
	d. Nitrogen fixation: Rhizobia, Actinorhizae, Stem Nodulating rhizobia	
	e. Fungal & Bacterial endophytes	
	f. Agrobacterium & other plant pathogens	
Unit – III	Microbe-Human Interactions: Infection and Disease	15 lectures
1.	The Human Host	04
	a. Contact, Infection, Disease	
	b. Resident Flora: The Human as a habitat	
	c. Gnotobiotic animalsd. Indigenous flora of a specific region	
2.	The Progress of an infection	05
	a. The Portal of entry	

	 c. Mechanism of Invasion and Establishment of the Pathogen d. Signs and Symptoms e. The Portal of Exit f. The persistence of microbes and pathologic conditions 	
3.	 Epidemiology: The Study of Disease in Populations a. Tracking Disease in the population b. Reservoir: where pathogens persist c. The acquisition and transmission of infectious agents d. Nosocomial Infections e. Using Koch's Postulates to determine etiology 	05
4.	Biological Warfare and Bioterrorism	01
СА	 Test Presentation/ Case study 	1
References:	 Willey, J. M., Sherwood, L., Woolverton, C. J., Prescott, L. M., & Willey, J. M. (2011). Prescott's microbiology 8thed. New York: McGraw-Hill Plummer, D.T. (1997).An introduction to practical biochemistry 3rded. New Delhi :Tata McGaw-Hill Williams, B.L. & Wilson, K. (1981). A Biologist's guideto Principles and techniques of practical biochemistry 2nd ed. London : Edward Arnold Garrett, R. H., & Grisham, C. M. (2010). Biochemistry 5th ed. Belmont, CA: Brooks/Cole, Cengage Learning Boyer, R. F. (2012). Modern Experimental Biochemistry. 3rded. New Delhi : Pearson Sawhney, S.K.& Singh, R. (2001).Introductory Practical biochemistry. New Delhi :Narosa Talaro, K. P., & Talaro, A. (2009). Foundations in microbiology: Basic principles 7th ed. Boston: WCB/McGraw- Hill. Bauman, R. W., Machunis-Masuoka, E., & Montgomery, J. E. (2015). Microbiology: With diseases by body system 4th ed. Boston: Benjamin Cummings 	

Semester II – Practical

Course:		
SMIC2PR		
	PRACTICAL – I	
	1 Study of Bacteriophages: Spot assay and (plaque	
	assay of Bacteriophage -Demonstration)	
	2 Isolation of Yeasts and Fungi on Sabouraud's agar	
	3 Study of Fungi (Slide culture and Wet Mount - Study of Morphological	
	Characteristics: Mucor, Rhizopus, Aspergillus, Penicillium)	
	4 Isolation of Actinomycetes from soil and slide culture of	
	Actinomycetes	
	5 Enrichment and Isolation of algae	
	6 Wet mount of Hay Infusion and Pond water for observing bacterial, algal and protozoan forms	
	7 Study of growth of organisms under static and shaker conditions	
	8 Growth curve of <i>E.coli</i>	
	9 Direct microscopic count by Breed's Count and Haemocytometer	
	10 Viable count: Spread plate and pour plate	
	11 Mc Farlands Standard opacity tubes	
	12 Effect of pH, temperature and osmotic pressure on growth	
1	13 Cultivation of anaerobes	
	PRACTICAL – II	
	1 Normal flora of the Skin & Saliva	
	2 Wet Mount of Lichen (Demonstration)	
	3 Bacteroid Staining & Isolation of Rhizobium	
	4 Study of virulence factors – Enzyme Coagulase	
	5 Study of virulence factors – Enzyme Hemolysin	
	6 Study of virulence factors – Enzyme Lecithinase	
	7 Demonstration of microbes in air, table surface, finger tips	
	8 Use of standard buffers for calibration and determination of pH of a	
	given solution	
	9 Preparation of buffers and solutions	
	10 Determination of λ max & Verification of Beer Lambert's law	
	11 Visit to a Microbiology Laboratory in a Research Institute	

Evaluation Scheme

- [A] Evaluation scheme for Theory courses
- I. Continuous Assessment (C.A.) 40 Marks
 - (i) C.A.-I : Test 20 Marks of 40 mins. duration
 - (ii) C.A.-II : Assignment/Project etc.
- II. Semester End Examination (SEE)- 60 Marks
- [B] Evaluation scheme for Practical courses-

Practical Exam at the end of the Semester- 100 Marks